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Abstract—In this paper, we in introduce a specification based intrusion detection model for detecting 
attacks on routing protocols in MANETs. Intrusion detection is a viable approach to enhancing the 
security of existing computers and networks. Briefly, an intrusion detection system monitors activity in a 
system or network in order to identify ongoing attacks. Intrusion detection techniques can be classified 
into anomaly detection, signature-based detection, and specification-based detection. In anomaly 
detection, activities that deviate from the normal behavior profiles, usually statistical, are flagged as 
attacks. Signature-based detection matches current activity of a system against a set of attack signatures. 
Specification-based detection identifies system operations that are different from the correct behavior 
model. Our specification-based approach analyzes the protocol specification of an ad hoc routing protocol 
to establish a finite-state-automata (FSA) model that captures the correct behavior of nodes supporting 
the protocol. Then, we extract constraints on the behavior of nodes from the FSA model. Thus, our 
approach reduces the intrusion detection problem to monitoring the individual nodes for violation of the 
constraints. Such monitoring can be performed in a decentralized fashion by cooperative distributed 
detectors, which allows for scalability. In addition, since the constraints are developed based on the 
correct behavior, our approach can detect both known and unknown attacks.We choose OLSR 
(Optimized Link State Routing) [10] as the routing protocol for the current investigation. 
Keywords— Access control, AODV, storage node, Optimized Link State Routing,Topology Control, hop,finite-
state-automata,MANET,OLSR. 

I. INTRODUCTION TO OLSR 

OLSR is a proactive table-driven link-state routing protocol developed by INRIA [10]. The protocol is a 
refinement of traditional link state protocols employed in wired networks; in the latter, the local link state 
information is disseminated within the network using broadcast techniques. This flooding effect will consume 
considerable bandwidth if directly employed in the MANET domain, and therefore, OLSR is designed to 
optimally disseminate the local link state informationaround the network using a dynamically established sub-
network of multipoint relay (MPR) nodes; these are selected from the existing network of nodes in the MANET 
by the protocol. 

OLSR employs two main control messages: Hello messages and Topology Control (TC) messages to 
disseminate link state information. These messages are periodically broadcast in the MANET in order to 
establish the routing tables at each node independently. In OLSR, only nodes that have bidirectional 
(symmetric) links between them can be neighbors. Hello messages contain neighbor lists to allow nodes to 
exchange neighborinformation, and set up their 1-hop and 2-hop neighbor lists; these are used to calculate multi-
point relay (MPR) sets[1]. 

An MPR set is a 1-hop neighbor subset of a node to be used to reach all 2-hop neighbors of the node. OLSR 
uses MPR sets to minimize flooding of the periodic control messages. Nodes use Hello messages to announce 
their MPR sets together with 1-hop neighbor sets. When a node hears its neighbors choosing it as an MPR node, 
those neighbors are MPR selectors of the node, and the node will announce its MPR selector set to the network 
by broadcasting TC messages[2]. 

TC messages are forwarded by MPR nodes to all nodes of the network. When a node receives a TC 
message, it will note that the originator of TC message is the “last-hop” toward all MPR selectors listed in the 
TC message. The links are then added into the topology table. Using its topology table, the node can set up its 
routing table by recursively traversing the (last-hop to node, node) pairs in its topology table (see Figure 1) and 
picking up the shortest path with the minimal hop count. Therefore, each node of the network can reach all other 
nodes[3]. 
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Figure 1: Generation of a route from Topology Table 

Several studies have been done on the vulnerabilities of OLSR [15][4]. In general, an attacker can fabricate 
packets, intercept and modify packets going through it, or refuse to forward packets, causing compromises of 
confidentiality, integrity, and availability. In this work, we only focus on those vulnerabilities that could 
compromise the integrity of the network, i.e., the routing tables in the nodes. In OLSR, each node injects 
topological information into the network through HELLO messages and TC messages. Therefore, a malicious 
node can inject invalid HELLO and TC messages to disrupt the network integrity, causing packets to route 
incorrectly or to the advantage of the attacks[4]. 

Table 1 displays the critical fields in the Hello message and the TC message on which the computation of 
the routing table depends. The 1-hop neighbor list in a Hello message is used by its neighbor to create the 2-hop 
neighbor list and MPR set. The MPR set in a Hello Message denotes the MPR set of the sender. The MPR 
selectors in TC messages are used in calculating routing tables at nodes receiving the messages[5]. 

Table 1: Critical fields in Hello and TC Messages 

 
II. ATTACK IMPACT 

Since every node concludes the same topology for the network from the TC messages broadcasted around the 
MANET, an attacker can influence this topology using the four attack methods described above. He can add or 
delete links in the routing tables of other nodes with these invalid messages. In addition, invalid messages from 
an attacker may trigger other incorrect messages that invalidate routing tables in the entire MANET [6]. 

For example, using the first method, an attacker can add a non-neighbor node in the 1-hop neighbor list of 
its Hello message. Other neighbor nodes of the attacker node may add the attacker as MPR in their Hello 
messages due to this non-existent neighbor. The attacker can now advertise this in its TC messages. As the TC 
message propagates through the whole network, every other node’s routing table is corrupted [6]. 

With regards to the TC message vulnerabilities, examples of attack include the following: If, in an initiated 
TC message, an attacker node fails to include a legitimate MPR selector, this may potentially deny service to 
this existent MPR selector; this denial of service may be partial or total depending on the topology around the 
victim node. Similarly, if, in a forwarded TC message, an attacker modifies the ANSN field, or the MPR 
selector list, then it effectively alters how the routing table is established at other nodes around the network. This 
may affect not only the network service at the neighborhood of the victim node that originated the TC, but may 
result in cascading network effects that arise from how routing decisions are made by nodes around the 
network[7]. 

These modifications of OLSR control message fields used by a single attacker as described above follow 
the basic format specifications of OLSR messages. This makes them hard to detect. However, they conflict with 
other OLSR control messages from other nodes. We call these conflicts “inconsistencies”[7]. 

III. INTRUSION DETECTION MODEL 

This section describes our specification-based approach to detecting attacks in OLSR. In general, 
specification-based detection recognizes attacks by comparing the activity of an object with a model of correct 
behavior of the object. It has been applied to detect attacks on computer programs and network protocols. 
Specification-based detection is particularly suitable for detecting attacks on network protocols because the 
correct behavior of a protocol is usually well defined and documented in the protocol specification. The 
challenge is to extract a suitable model of behavior from the protocol specification that can be checked at 
runtime using network monitoring. We first list assumptions employed, and then present the correct behavior 
model of OLSR under these assumptions [8]. 

A. ASSUMPTIONS 

We assume a distributed intrusion detection architecture that allows cooperative detectors to promiscuously 
monitor all Hello and TC messages, and exchange their local data if necessary. IDS detectors in this architecture 
can monitor all Hello and TC messages sent by each node of the network, always exchange IDS data 
successfully, and will not be compromised.In addition, we assume that cryptographic protection, such as 
DRETA is employed to guard against spoofing attacks. Furthermore, we assume OLSR is the only routing 
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protocol in the network and each node has only one network interface. In other words, Multiple Interface 
Declaration (MID) and Host and Network Association (HNA) messages are not used here. Lastly, we assume 
nodes forward TC messages following OLSR Default Forwarding Algorithm and nodes forward normal packets 
to the correct next hop [9]. 
B. CORRECT BEHAVIOR MODEL OF OLSR 

Figure 2 shows the FSA model of the OLSR protocol that defines the correct operation of an OLSR node in 
handling control traffic. When a node receives a Hello control message, it will update its neighbor list and MPR 
set. Upon receiving a TC control message, a node updates the topology and routing table. In addition, the node 
will forward the TC if it is a MPR node. In addition, a node will periodically broadcast Hello and TC messages 
[10]. 

 
Figure 2: OLSR Routing Finite State Automata (FSA) 

We describe the constraints on the control traffic between neighbor nodes for detecting inconsistencies 
within the control messages. 

C1: Neighbor lists in Hello messages must be reciprocal. E.g., if node 2 is the neighbor of node 1, then 
node 1 must be node 2’s neighbor. 

C2: The MPR nodes of a node must reach all 2-hop neighbors of the node and the MPR nodes must 
transmit TC messages periodically. 

C3: MPR selectors of a TC message must match corresponding MPR sets of Hello messages. E.g., if 
node 2 is node 1’s MPR selector, node 1 must be node 2’s MPR. 

C4: Integrity of forwarded TC messages must be maintained. 
C1 ensures that 1-hop neighbor lists of Hello messages from all nodes are consistent. According to the 

OLSR routing specification, since 1-hop neighbor lists are consistent, nodes can produce correct 1-hop and 2-
hop neighbor lists. C2 ensures that MPR nodes of each node connect all 2-hop neighbors of the node. By 
definition of MPR, MPR sets are correct. C3 ensures that MPR selector sets are consistent with MPR sets and 
therefore are correct. C4 ensures that the forwarded MPR selector sets are correct [11]. 

 
Figure 3: Security Specification Finite State Automata 

Figure 3 (an extension of the FSA in Figure 2) depicts the FSA used by the specification-based intrusion 
detection system. When a OLSR control message violates one of the constraints, the FSA moves from a normal 
state into one of the alarm states (Modified Hello State, Modified Init TC State, Modified Forward TC State) To 
recover from the errors, a detector may broadcast the corrected TC message, or force the node causing the 
violation to resend the corrected Hello message, and thereby recover corrupted routing tables of infected nodes. 
Thus, the report violation actions in the FSA can be enhanced to perform the corrective action. Since our 
proposed model is only dealing with intrusion detection, we do not explore such recovery actions further in this 
work. However, this preliminary recovery model is incorporated into our simulation experiments using 
GloMoSim [12]. 
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C. TEMPORARY INCONSISTENCY 

Temporary violation of constraints C1, C2 and C3 may occur in a short period of time as links are created or 
removed when the topology changes. To avoid false alarms, a detector must wait for the two nodes on both sides 
of a link to learn the new link status before asserting the inconsistency as an attack. For example, if a new link 
between node A and node B is created, node A may update the status of link A-B and send a Hello message that 
is not consistent with the previous Hello message of node B, which does not claim that link A-B exists. The 
detector should wait for node B to receive the new Hello message from A and send a new Hello message that 
reflects the addition of link A-B. In case of broken links, (leading to lost messages), the detector should wait for 
the expiration of the old records at the nodes. In other words, if a detector detects violation of constraint 1, 2 or 3 
with regard to nodes A and B, and the violation continues to occur after a certain threshold, then the detector 
will raise an alarm. In addition, because temporary inconsistency propagates due to an unstable asymmetric link, 
constraints 1 and 2 require 12 seconds and constraint 3 requires 15 seconds because of the 5 second TC interval 
time. For constraints C4, since the validation of new messages depends on the messages from the originators, 
temporary inconsistency does not occur [13]. 

 
Figure 4: Resolving temporary inconsistency between nodes of a link 

Table 2: Important Parameters for Temporary Inconsistency 

 
D. LIMITATIONS 

For a single attack or non-correlated attacks, the model can detect all attacks since we capture all possible ways 
to modify a single message at a time. But if two or more attackers launch a correlated attack in which incorrect 
information is supplied to multiple nodes consistently, the constraints may not be able to detect it. For example, 
if two attackers are not neighbors but both claim they are neighbors, there may be no detectable violation. 
Because Hello messages are 1-hop broadcast messages and detectors do not know who actually receive them, 
detectors are not able to employ constraint C1 to detect violations. This attack is a tunneling attack— attackers 
build up a virtual link between them. 

 
Table 3: OLSR Routing Table Establishment 

IV. ANALYSIS OF THE OLSR DETECTION MODEL 

In this section, we analyze the OLSR protocol and the proposed detection model to show that the set of 
constraints C1 — C4 can identify attacks in MANETs. As discussed, a malicious node can disrupt the integrity 
of the network (causing good nodes to change their routing table to its advantage) by intentionally generating 
and forwarding incorrect control messages. In particular, we show that in an OLSR network with only one 
malicious node, these constraints ensure that the malicious node cannot compromise the integrity of the routing 
tables of any good nodes [14]. 
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Table 3 describes the process for establishing the routing table from the perspective of a node. Initially, a 
node exchanges its 1-hop neighbor list with its neighbors using Hello messages. Then the node establishes its 2-
hop neighbor list based on the Hello messages fromits neighbors. 
Based on the 2-hop neighbor list, the node generates the MPR set and announces them in Hello messages. 
Nodes that are chosen to be MPR will generate TC messages and forward TC messages originating from other 
nodes so that every node will receive all the TC messages. Finally, a node computes the routing table from the 
information in the Hello messages and TC messages. 

According to the OLSR protocol RFC [10], each node maintains a link set and a topology set that are used 
for calculation of the routing table. The link set contains the link information of its 1-hop neighbor, and is 
constructed from the Hello messages it receives. The topology set contains topology tuples in the form of 
T[DestAddr], T[LastHopAddr], T[Seq], T[HoldingTime], which indicate that one can reach T[DestAddr] 
through T[LastHopAddr]. The topology set is constructed from the TC messages a node receives. A node 
computes the routing table from its link set and topology set. Therefore, the routing table of a node is correct if 
its link set and topology set are correct [14]. 

Lemma 1:All good nodes will have a correct link set if constraint C1 holds. 
First, according to the OLSR routing specification, a node builds and maintains its link set from the 1-hop 
neighbor field of the Hello messages it receives. Therefore, if the 1-hop neighbor fields of all Hello messages 
and the source address are correct, then all nodes will have a correct link set. 

Now, we show that a Hello message with an incorrect 1-hop neighbor field will be detected as a violation of 
C1. Consider a bad node which produces a Hello message with an incorrect 1-hop neighbor field. There are two 
possibilities: 

1) It claims another node A as its 1-hop neighbor, but A is not. In this case, the IDS will detect this when 
it compares the Hello message from the bad node with the Hello message from A. 

2) It omits, in its set of 1-hop neighbors, a real neighbor B. In this case, the IDS will detect a violation of 
C1 when it compares the Hello message from the bad node to the Hello message from B. 

In both cases, the incorrect Hello message will be detected as a violation of constraint C1. Given that the 
source address of a Hello message is correct (by the assumption of no spoofing), all nodes will have a correct 
link set if constraint C1 holds. 

Lemma 2: The MPR selector field of a TC message generated by an MPR node must be correct if constraint 
C3 holds. 

According to the OLSR specifications, a (complete) TC message contains the set of MPR selectors of the 
originating node. There are two cases in which the MPR selector field in the TC message could be wrong. 

1) The MPR selector field contains a node X that is not a MPR selector of M. 
2) The MPR selector field misses a node Y that is a MPR selector of M 
In case 1, the Hello message generated by node X will be inconsistent with the TC message. Therefore, the 

IDS will detect the violation of constraint C3. In case 2, the Hello message generated by node Y will be 
inconsistent with the TC message, and thus will be detected. 

Lemma 3: The MPR selector fields of all TC messages must be correct if con¬straints C3 and C! hold 
Table 4: Radio Propagation Parameters in GloMoSim 

Any TC message in the network is either an original message sent by the originating node or a forwarded 
message. In the former case, Lemma 1 guarantees the correctness of the selector fields. In the latter case, 
constraint C4 assure that the forwarded TC message must be the same as the original TC message; thus, the 
MPR selector field must be correct. 

Lemma 4: For a node x, which is a n-hop neighbor of a different node y, x will receive TC messages of y 
with n-1 forwarding if C2 holds. 

We use induction to prove this lemma. 
1) For n = 1, all y’s one-hop neighbors will receive TC messages without forwarding. For n = 2, all y's 

two hop neighbors will receive TC messages of y with one forwarding if C2 hold. 
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2) (Induction step) We assume that any node A will receive a TC message of an n-hop neighbor B with 
n−1 forwarding if C2 holds for all 2 < n < k. For a node x that is a k-hop neighbor of a node y, without loss of 
generality, let x, N1, N2, ...,Nk−1, y be a path from x to y such that N1 is a MPR of N2. We argue that such a path 
exist if C2 holds — since N2 is a 2-hop neighbor of x, there must be a MPR of N2 through which N2 can reach 
x. As node N1 is a k − 2 hop neighbor of y, by the inductive assumption N1 will receive TC messages from y 
with k − 2 forwarding. Therefore, x will receive TC messages from y through N1 k − 1 forwarding. 

By induction, Lemma 4 is true for all integer n > 0. 
Theorem 1: All nodes will have a correct routing table if constraints C1, C2, C3, and C! hold. 

Since each node in the MANET computes the routing table based on the link set and the topology set, the 
routing table will be correct if the two sets are correct. Given that C1 holds, Lemma 1 ensures that the link set in 
each node is correct. Given that C3 and C4 hold, Lemma 3 ensures that the MPR selector field of all the TC 
messages that a node receives is correct. Given C2, Lemma 4 ensures that a node will receive TC messages from 
all nodes. According to the OLSR specification, the topology set is computed from the TC messages. Therefore, 
the topology set will be correct if, in addition, every MPR sends out the TC messages. Since constraint C2 
guarantees that all nodes in the true MPR set send out TC messages, the topology set in each node must be 
correct. Therefore, the routing table in each node must be correct [11]. 

V. SIMULATION 

To measure and validate the effectiveness of our approach, we have implemented the detection mechanism for 
checking the constraints and experimented with it in a simulated OLSR network under a variety of mobility 
scenarios. We have implemented several of the example attacks to test the detection capability. In addition, we 
tested the prototype under a normal situation to measure the performance, especially false positive 
characteristics [11]. 
A. SIMULATION ENVIRONMENT 

We used the GloMoSim simulation platform to experimentally validate our approach. The simulation is based 
on IEEE 802.11 and Ground Reflection (Two-Ray) Model, having both the direct path and a ground reflected 
propagation path between transmitter and receiver. The radio range is around 376.7 meters, calculated by the 
parameters shown in Table 4 [11]. 

The network field is 1000 m x 1000 m region divided into cells. Nodes are placed into each cell randomly. 
Each attack scenarios has a stable topology with 10 nodes. Total simulation time is 600 seconds. 
In the experiments all mobile nodes follow the Random Waypoint Mobility Model with speed of 5,10, and 20 
m/s, and pause times of 0, 30, and 60, ..., 300 seconds. For background traffic, the numbers of mobile nodes 
uses were 50, 100, 200, and 400. In the experiments, 10% of mobile nodes continuously generated 1024 byte 
packets at a constant rate of 1 packet per second, 8K bps, across the network topology. The simulation metrics 
mainly focus on false positives, false negatives, the distribution of temporary inconsistency lasting time and 
maximum value for each constraint. 
B. IMPLEMENTATION OF DETECTION MECHANISM 

Our proof-of-concept prototype is implemented as a global detector that can monitor all Hello and TC messages 
in the simulated OLSR network. It is important to note that although the current prototype is a centralized 
detector, the proposed intrusion detection model can be implemented in a decentralized. As the goal of the 
proof-of-concept prototype is to validate the detection model, a centralized implementation suffices for 
validating the false positive and false negative characteristics under our assumptions [9]. 

Four data tables are maintained by the global detector to record 1-hop neighbors, 2-hop neighbors, MPR 
and MPR selector sets of all nodes. Four constraints are evaluated according to data tables and incoming 
messages. An alert will be raised if a constraint is violated. However, topology changes will cause temporal 
inconsistency and lead to false alert. To minimize the false positive rate, we develop a mechanism to detect 
temporal inconsistency between new message and old history data. First, we set threshold time for each 
constraint according to intervals of Hello messages and TC message. Then we generate alerts only when an 
inconsistency last beyond the threshold time of a constraint. As an example, we list the pseudo code of 
Constraint C1 in Figure 5 [6]: 
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Figure 5: Pseudo code of constraint C1 

C. EXAMPLE ATTACK SCENARIO AND RESULTS 

 
Figure 6: Example Topology in OLSR 

We implemented one example of a man-in-the-middle attack and two examples of denial of service attacks 
using the four attack methods. We present an example topology, shown in Figure 6 and Table 5, in order to 
illustrate the details of the example attacks and their impact. 

Table 5: Relevant OLSR data for example topology 

 
In each example attack, the attacker uses attack mechanisms slightly modifying the control messages to trigger 
changes in the routing tables of other nodes as desired by the attacker. These example attacks demonstrate that, 
by employing carefully designed modifications, an attacker can successfully manipulate routing tables at other 
nodes. Note that we simulate the attacks with no mobility to ensure the attacks are effective [7]. 

For each example attack, the detector detects the attacks as violations of the constraints. In this 
implementation, we combine a recovery model with the intrusion detection model. To recover the corrupted 
routing tables of infected nodes from the attack, the detector may send the correct TC message with a higher 
ANSN and the correct MPR selector set to override the corrupted TC message. If the compromised node is the 
originator of the message, the detector commands the node to resend correct messages to override the corrupted 
messages. The simulation shows the correct messages successfully override the corrupted messages and correct 
the infected routing tables [8]. 

 
Figure 7: Man in the Middle Attack by A1&A3 Man in the Middle Attack by A1&A3 
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An attacker at node 1 intends to change a route, 8 —* 9 —* 5 —* 7 —* 3, to go through itself. It uses 
attack methods 1 and 3 to convince nodes 8 and 4 to forward packets toward 3 through itself, and then it can use 
2 to forward the packets from 8 to 3. First, by attack method 3, node 1 adds 3 into its MPR selectors in its new 
TC message to make 8 choose 4 as the next hop toward 3. 8 receives the new forged message and choose 1 as 
the last hop to 3 in its topology table; this is used to reach all node in 3 or more hops away. Since 1 is a 2-hop 
neighbor of 8, from 8’s point of view, route 8 —* 3 becomes 8 —* 4 —* 1 —* 3, so 8 chooses 4 as the next 
hop toward 3 in its routing table [6]. 

Second, by attack method 1, node 1 adds 3 to its 1-hop neighbors in its new Hello message in order to make 
4 choose 1 as the next hop toward 3. After receiving the forged message, 4 adds 3 into its 2-hop neighbor list, 
and chooses 1 as the next hop toward 3 in its routing table. Thus, when 8 forwards packets toward 3 to 4, 4 
forwards them to 1, and attacker 1 can forward the packets from 4 to node 2 in order to successfully change the 
route from 8 to 3. Since 2 received 7’s Hello first and added 3 as a 2-hop neighbor, 2 will not choose node 1 as 
its next hop toward 3. 2 forwards the packets to 7 and 7 forwards them to 3. The attack is a success. Note that 
attacker 1 has to continuously broadcast forged messages to make the attack remain effective. 

If an attacker arbitrarily adds other non-neighbors into its 1-hop or MPR selectors, it will easily make itself 
a black hole. This will attract much useless traffic, marking itself as an attacker. However, in this case, the 
attacker (node 1) successfully launches a man in the middle attack by slightly changing its two messages 
without forging its own address, and therefore it is difficult to detect this attack using other existing approaches 
[8]. 

Using constraint 3, the detector detects that 1’s MPR selectors = [2,3,4,5] in 1’s TC message do not match 
3’s MPR= [7] in 3’s Hello message. Additionally using constraint 1, 1’s 1-hop neighbors = [0,2,3,4,5] in 1’s 
Hello message do not match 3’s 1 hop neighbors = [7] in 3’s Hello message. Since the attacker keeps sending 
the forged messages, the detected inconsistencies easily last over the temporary inconsistency threshold for C1 
and C3, which is 12 seconds. Therefore, the detector detects the attacks correctly. The maximum temporary 
inconsistency here is less than 12 seconds. Finally, the detector commands node 1 to send correct TC(1) = 
[2,4,5] and Hello(1) = [0,2,4,5], and then 8 and 4 receive 1’s correct TC and Hello and use 9 and 5 to reach 3. 
The route is 8 —* 9 —* 5 —* 7 —* 3 is recovered. 
Denial of Service by A2 

An attacker at node 7 intends to annul a route 8 —* 4 —* 5 —* 7 —* 3 by attack method 2, i.e., declaring 
an incorrect MPR list in its Hello message. First, 7 removes 5 from its MPR set(becoming empty) in its Hello 
message. Second, 5 receives 7’s modified Hello and believes 5 is not in 7’s MPR set, so 5 removes 7 in its MPR 
selectors = [1,4,6,9] in 5’s new TC. When 8 receives 5’s new TC, 8 believes 8 cannot use 5 as the last hop to 
reach 7. Since 7 is 3 hops away from 8 and 8 cannot use anyother node as the last hop to reach 7, 8 cannot reach 
7 and therefore cannot reach 3. 

 
Figure 8: Denial of Service by A2 

The route 8 to 3 is down. This attack is harder to detect than the first one because it requires 2-hop neighbor 
information which is not explicitly sent out in Hello or TC messages. 

Note that 5 will not forward 7’s TC messages, so no node except 7’s 1-hop neighbor will have 7’s TC 
messages. This makes 0, the other 3 hop neighbor of 7, unable to connect to 7. If there were a route from 0 to 3, 
it is also down. 

Using constraint 2, the detector detects that 7’s MPR set is empty and 7’s MPR set has not reached all of 7’s 
2-hop neighbors [1,4,9]. Once the inconsistency lasts over 12 seconds, the alert is raised. So the detector 
commands 7 to send correct a MPR set [5] in 7’s new Hello message. When receiving correct Hello message 
from 7, 5 adds 7 back to 5’s MPR selectors [1,4,6,7,9] in 5’s new TC. Then 8 receives 5’s new TC and uses 5 to 
connect to 7. The route becomes available again. Here there is no temporary inconsistency for C2, so no false 
positive. 
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Figure 9: Denial of Service by A4 Denial of Service by A4 

An attacker at node 2 intends to annul route 8 +-> 4 +-> 5 +-> 7 +-> 3 by attack method 4, where forwarded 
TC messages are modified with a high ANSN. It uses two forged forwarded TC messages to remove the global 
links, 4 —* 8 and 7 —* 3. First, 2 broadcasts TC(7)=[2,5,6] without 3 to make 8 not use 7 to reach 3; thus route 
8 —* 3 is down. Again, 2 broadcasts TC(4), which is [1,5], without 8 to make 3 unable to use 4 to reach 8; now 
route 3 —* 8 is down. Since the forged TC messages have high ANSN, all other nodes hearing them replace the 
correct information with the forged one, so that 8 and 3 cannot communicate with each other. The bidirectional 
route is down. Note that other nodes except 3,4,7,8 can do the same thing. If 4 or 7 does this, it is using attack 
method 3, not 4. This attack can be detected by authenticating forwarding messages. 

By constraint 4, the detector detects that TC(4) and TC(7) sent by 2 do not match those from the 
originators, 4 and 7, respectively. The detector sends correct TC(4) and TC(7) with ANSNs higher than forged 
messages to override them. Finally, 3 and 8 receive correct TC messages, and are able to communicate with 
each other. The route is recovered. Here C4 does not require considering any temporary inconsistency 
thresholds, and there are no false positives and false negatives [9]. 
D. TEMPORARY INCONSISTENCY AGAINST MOBILITY 

With no mobility, temporary inconsistencies only happen when nodes establish 1-hop neighbor 
relationships in the first 5 seconds. Once they are capable of sending TC messages, no temporary inconsistency 
occurs. In mobile topologies, temporary inconsistencies keep happening while nodes move. We choose different 
mobility pause times of 0, 30, 60, 120, 300, and 600 seconds employing the Random Waypoint Mobility Model 
with a speed range of 1 to 20 meter/sec to demonstrate different levels of mobility. We also simulate 10, 20, and 
30 traffic sources with continuously generating 512 byte packets at a constant rate of 1 packet per second, 5K 
bps, across the network topology. 

 
Figure 10: Number of lasting temporary inconsistencies with different number of nodes and sources 

Most temporary inconsistencies will be resolved by the next message of the same kind sent from the same 
originator and only few of the inconsistencies may last. Figure 10 shows the number of lasting temporary 
inconsistencies caused by mobility. In Figure 10(a), 100 nodes in a 2000m x 2000m area result in many more 
inconsistencies than 50 nodes in a 1000m x 1000m area. Although 100 nodes generate 2 times the number of 
messages than 50 nodes, 100 nodes roughly generate 4 times the number of temporary inconsistencies. The 
higher the degree of mobility is, the more inconsistencies are generated, especially for inconsistency against C1. 

Figure 10(b) shows the number of temporary inconsistencies against C1 in a 50 node topology with 10, 20, 
and 30 traffic sources. With higher traffic load, the inconsistencies occur more. However, the impact of traffic 
load for temporary inconsistencies is not as much as that of number of nodes. Therefore, the number of nodes 
and their degree of mobility are the two main factors of temporary inconsistency. 
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Figure 11: Maximum and Average Temporary inconsistencies lasting time 

Maximum temporary inconsistency lasting time indicates what the alert threshold for constraints should be. 
In Figure 11(a), the maximum lasting times of C1, C2 and C3 are less than the thresholds 12 seconds and 15 
seconds, and do not lead to false alarms. If the thresholds are 6 seconds, there will be less than 15 false alarms 
in a 100 node-topology with low pause times. Although the maximum temporary inconsistency lasting time in a 
100-node topology is greater than in a 50 node- topology, their average lasting time is roughly the same, where 
the times of C1 and C2 are about 1.5 to 1.8 seconds, and those of C3 are 4.7 to 4.3 seconds. 

Also, attacks using the four attack methods are tested in 100 node and 50 node mobile topologies. These 
attacks consist of arbitrary modified values of 1-hop neighbors, MPR, and MPR selectors in the Hello and TC 
messages and they will continuously send modified messages at least 1 minute. If the attacks contain the 
addresses of inactive nodes, which do not send Hello messages for 1 minute and include unused nodes, or the 
attacks violate C4, the detector raises alarms immediately. If the attacks violate C1, C2 or C3, the detector raises 
an alert while the attacks last larger than the thresholds. The detector detects all attacks in which the modified 
messages are sent by the attackers. No false positives are found in a mobile topology with background traffic 
(20 sources). 

VI. CONCLUSION 

Analyzing the OLSR routing specification, we define the normal OLSR routing behavior and list possible 
attack mechanisms from a single attacker. Based on the normal routing behavior, nodes retrieve routing 
information, and establish and maintain their routing tables correctly using the Hello and TC messages. We 
develop constraints on these Hello and TC messages in order to establish that the integrity of the routing 
tables at all nodes is not compromised. We develop the proof of satisfaction of the requirement that the 
integrity of routing tables of all nodes is safe-guarded. Besides, we implement the constraints and example 
attacks on the Glomosim simulation platform. 

At first in this paper, we assumed that it has all Hello and TC messages to have sufficient data for 
intrusion detection, then we present a distributed intrusion detection model that can supply sufficient routing 
data for the detection. Secondly, we assumed that a cryptographic protection detects spoofing attacks.  
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