
LABELING ALGORITHM FOR
GENERALIZED MAXIMUM FLOW

NETWORK
A. ANTO KINSLEY*,

Associate Professor, Department of Mathematics,
St. Xavier’s college (Autonomous), Palayamkottai- 627 002.

Tirunelveli, India.
Phone: 9443446496, Email: antokinsley@ yahoo.com

B. UMA MAHESWARI,

Research scholar, Department of Mathematics,
St. Xavier’s college (Autonomous), Palayamkottai- 627 002.

Tirunelveli, India.
Phone: 9442624315, Email: umaraju211199@gmail.com

Abstract— In any traditional network, there is an implicit assumption that flow is conserved on every arc.
In generalized networks, each arc has a positive multiplier γ(u, v) called a gain factor, associated with it,
representing the fraction of flow that remains when it is sent along that arc. The generalized maximum
flow problem is identical to the traditional maximum flow problem, except that it can also model network
with “leak” flow. In this paper, we describe the application of the labeling algorithm to the maximum-
flow generalized network problem. This algorithm has complexity O (EV), where E and V are the number
of edges and vertices respectively.

Keywords-Networks; flow; capacity; gain function; maximum flow and generalized networks.

I. INTRODUCTION

For graph theoretic terminology, we refer to Bandy and Murthy [1]. The network flow problem [2] can
be solved by several methods. The first algorithm for the network flow problem was given by Ford and
Fulkerson [3]. Labeling methods provide an alternative approach for solving network problems. The basic idea
behind the labeling procedure is to systematically attach labels to the nodes of a network until the optimum
solution is reached.

The generalized maximum flow problem is a natural generalization of the traditional maximum flow
problem. In traditional networks, there is an implicit assumption that flow is conserved on every arc. This
assumption may be violated if water leak as it is pumped through a pipeline. Many applications are described in
[4].

In a generalized network, a fixed percentage of the flow is lost when it is sent along an arc. Specially,
each arc (u, v) has an associated gain factor γ(u, v). When f (u, v) units of flow enter into the arc (u, v) through
node u then γ(u, v) f (u, v)arrive at v. As the example in below illustrates, if 80 units of flow are sent into an arc
(u, v) with gain factor 3/4, then 60 units reach node v: if these 60 units are then sent through an arc (v, x) with
gain factor ½, then 30 units arrive at x.

The Maximal-Flow Problem

 If v denotes the amount of material sent from node s, called the source, to note t, called the sink, the
problem can be formulated as follows:

u v

γ = 3/4 γ = 1/2

x 80

30

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 36

Maximize v,

subject to:

).,......,2,1;,......,2,1(,0
,0

,

njniuX

otherwise

tiifv

siifv

XX

ijij

k
ki

j
ij

==≤≤








=−
=

=−

We assume that there is no arc from t to s. Also, ∞+=iju if arc i – j has unlimited capacity. The interpretation
is that v units are supplied at s and consumed at t.

Letting tsx denote the variable v and rearranging, we see that the problem assumes the following
special form of the general network problem:

Maximize 'tsx

Subject to:

).,......,2,1;,......,2,1(,0

),......,2,1(0

njniuX

niXX

ijij

k
ki

j
ij

==≤≤

==−

Here arc t − s has been introduced into the network with tsu defined to be + ∞, tsx simply returns the v units
from node t back to node s, so that there is no formal external supply of material.

II. GENERALIZED MAXIMUM FLOW PROBLEM

Definition 2.1

The generalized maximum flow problem is a generalized network G = (V, E, t, c,γ,e) where V is an
n-set of nodes, E is an m-set of directed arc, vt ∈ is a distinguished node called the sink, 0: ≥→ REc is a
capacity function, 0: ≥→ REγ is a gain function, and 0: ≥→ RVe is an initial excess function. A
residual arc is an arc with positive capacity. A flow generating cycle is a cycle whose gain is more than one.

Definition 2.2

 A generalized pseudo flow is a function REf →: that satisfies the capacity constraints

() ()wvCwvf ,, ≤ for all () Ewv ∈, and the anti-symmetry constraints () () ()vwfvwwvf ,,, γ−= for all

() Ewv ∈, . The residual excess of f at node v is () () ()
()


∈

−=
Ewv

f wvfveve
,

, i.e., the initial excess minus

the net flow out of v. If e f (v) is positive (negative) we say that f has residual excess (deficit) at node v. A
generalized flow is a generalized pseudo flow that has no residual deficits, but it is allowed to have residual
excesses. A proper generalized flow is a flow which does not generate any additional residual excess, except
possibly at the sink.

We note that a flow can be converted into a proper flow, by removing flow on useless paths and cycles.
Let OPT (G) denote the maximum possible value of any flow in network G. A flow f is optimal in network G if
 | f | = OPT (G) and ξ - optimal if |g| ≥ (1 - ξ) OPT (G). The (approximate) generalized maximum flow problem
is to find a (ξ-) optimal flow.

 Optimality conditions

An augmenting path is a residual path from a node with residual excess to the sink. A generalized
augmenting path (GAP) is a residual flow-generating cycle, together with a (possibly trivial) residual path from
a node on this cycle to the sink. By sending flow along augmenting paths or GAPs we increase the net flow into
the sink.

Theorem 2.3

 A flow f is optimal in network G if and only if there are no augmenting paths or GAPs in G f.
Proof: Refer [3].

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 37

III. LABELING ALGORITHM – FORMAL STATEMENT

Initialization

Assume a given feasible flow plan ijf (if none is given, use the feasible plan with all 0=ijf). The

initial effective capacity *
iju on arc i– j is given by calculating jiijijij ffcc +−=* (i.e., unused capacity

ijij fc − Plus return capacity jif).

Path Search

Start with the source node s and label (mark) every node k with .0* >skc . Then, in turn, select any

labeled node i not already scanned (i.e., used to label other nodes) and label every node j with 0* >ijc until
either t has been labeled or no further labeling can take place.

Capacity Update

If t has been labeled, then a flow-carrying path P has been found from source to sink (0* >ijc for

every arc i – j on the path), and { }PinjicMin ij −= /*θ is the flow capacity of the path. For every arc

i – j of P, change *
ijc to θ+*

ijc . i.e., increase the effective capacity of the return path. (Adding or subtracting

finite θ to any ∞+=*
ijc keeps the *

ijc at ∞+ . If every *
ijc in P is + ∞, then θ = +∞ and the optimal flow is

infinite.)

Termination

 If the path search ends without labeling t, then terminate. The optimal flow pattern is given by:







≤

>−
=

*

**

0 ijij

ijijijij

ij
ccif

ccifcc
f

Let us consider the water-pipeline system. The numbers above the arcs indicate flow capacity and the
bold-faced numbers below the arcs specify a tentative flow plan.

X t s = v

Figure1. A Simple network

1

5 3

2

6

2

3
1

0

2

0

4

1

1

2

4

8

1

5

1

2

4

0

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 38

The algorithm for finding maximal flow rests on observing two ways to improve the flow in this
example. The following two ‘‘paths’’ appear in Figure1.

 2 5

 1 + 1

In the first case, the directed path 1–3–6 has the capacity to carry 2 additional units from the source to
the sink, as given by the capacity of its weakest link, arc 3–5. Note that adding this flow gives a feasible flow
pattern, since 2 units are added as input as well as output to both of nodes 3 and 5.

The second case is not a directed path from the source to the sink since arc 2–4 appears with the wrong
orientation. Note, however, that adding one unit of flow to the ‘‘forward arcs’’ from 1 to 6 and subtracting one
unit from the ‘‘reverse arc’’ 2-4 provides a feasible solution, with increased source-to-sink flow. Mass balance
is maintained at node 4, since the one more unit sent from node 3 cancels with the one less unit sent from node
2. Similarly, at node 2 the one additional unit sent to node 5 cancels with the one less unit sent to node 4.

The second case is conceptually equivalent to the first if we view decreasing the flow along arc 2-4 as
sending flow from node 4 back to node 2 along the reverse arc 4-2. That is, the unit of flow from 2 to 4
increases the effective capacity of the ‘‘return’’ arc 4-2 from 0 in the original network to 1. At the Same time, it
decreases the usable or effective capacity along arc 2-4 from 3 to 2. With this view, the second case becomes:

Now both instances have determined a directed flow-carrying path from source to sink, that is, a
directed path with the capacity to carry additional flow.

The maximal-flow algorithm inserts return, arcs, such as 4–2 here, and searches for flow-carrying
paths. It utilizes a procedure common to network algorithms by ‘‘fanning our’’ from the source node,
constructing flow-carrying paths to other nodes, until the sink node is reached.

Figure 2 solves the water-pipeline example in Fig. 1 by this algorithm. Checks next to the rows indicate
that the node corresponding to that row has already been scanned. The first three tableaus specify the first
application of the path – search step in detail. In Tableau 1, node 1 has been used to label node 3. In Tableau 2,
node 3 was used to label nodes 4 and 5 (since C34

*> 0, C35
*> 0). At this point either node 4 or 5 can be used next

for labeling. The choice is arbitrary, and in Tableau 3, node 5 has been used to label node 6. Since 6 is the sink,
flow is updated. The last column in the tableau keeps track of how nodes have been labeled. By Backtracking,
we get a flow-carrying path P from source to terminal. For instance, from Tableau 3, we know that 6 have been
labeled from 5, 5 form 3, and 3 from 1, so that the path is 1–3–5–6.
 Initial capacity C i j

 1 2 3 4 5 6
 Source

1

 2

 3

 4

 5

 Destination 6

Figure 2. Table for the maximal-flow algorithm

8

2

8

3

4

4

2

1

5

1 3
0 + 2

5
0 +2 1 + 2

4
1 + 1

2 5 6 1

8

4 8 3 4 5

0 + 1 0 + 1 1 - 1 1 + 1
3

3 4 2 5 6 1
4 8 3 4 5

0 + 1 0 + 1 1 - 1 1 + 1 1 + 1

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 39

Tableau 1

Tableau 2

Tableau 3

{ } { } 24,2,8* ===
−

MinCMin ij
Pinji

θ . Subtract 2 from C13
*, C35

*, C56
*and Add 2 to C31

*, C53
*andC65

*.

 Path 1 – 3 – 5 - 6

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 40

Tableau 4

{ } { } 12,3,1,4,6* ===

−
MinCMin ij

Pinji
θ . Subtract 1 from C13

*, C34
*, C42

*, C25
*, C56

*and Add 1 to

C31
*, C43

*, C24
*, C52

*, C65
*.Path 1 – 3 – 4 – 2 – 5 - 6.

Tableau 5

 1 2 3 4 5 6 Labeled from

 Source
 1

 2

 3

 4

 5

 Destination 6

Key: Entry in ith row and jth column of each tableau is c i j* blank entries denote zeros

Tableau 4 contains the updated capacities and a summary of the next path search, which used nodes 1,
3, 4, 2, and 5 for labeling. The fifth tableau contains the final updated capacities and path search. Only nodes 1,
3, and 4 can be labeled in this tableau, so the algorithm is completed.

Figure 3.

5

 start

2

3

2

3

3

1

1

3

2

2

1

1

4

1

5 3

2

6

2

3
1

2
2

2

4

3

1

2

4

8

1

5

1

4
1

X6 1 = v =4

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 41

Figure 4.

The flow at any point in the algorithm is obtained by subtracting effective capacities from initial capacities,
*

ijij cc − and discarding negative numbers. For Tableaus 1, 2, or 3, the flow is given by Figure1. After making
the two indicated flow changes to obtain Tableau 4 and then Tableau 5, the solutions are given in two networks
shown in Figures 3 and 4. The optimal solution sends two units along each of the paths 1–2–5–6 and 1–3–5–6
and one unit along 1–3–4–6.By Max-flow Min – cut theorem, the maximum –in-flow is 5 units and the resultant
network is given in Figure. 4. Maximum flow can be pushed the network is 5 + 4 =9.

We shall present an algorithm sends flow along all gain augmenting paths simultaneously, using a
maximum flow computation the algorithm is given below.
Algorithm 3.5

Procedure max flow (X: network; f: flow; gain function RE →:γ : max - out-flow: real)

 {Finds maximum out flow in a given network}
 Max -out-flow value: = 0
 Set 10,1 <<−= ξξγ where
 While there exists an augmenting path do

 Max – out - flow value: = max – out - flow value + γwhere () () += yx γγγ
 End {while}.
To find maximum out flow

 Consider the network with gain function

In this network we have GAP:

1

5 3

2

6

(2, 2, 1/2)

3

(1, 1, 2/3)

(2, 2, 1/3)

(4, 1, 3/4)

4

(8, 3, 5/8) (5, 4, 1/4)

(4, 1, 3/4)

X 6 1 = v = 5

4

1

5 3

2

6

2

3
1

3
2

2

4

4

0

2

4

8

2

5

1

4
1

X6 1 = v =5

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 42

F1: 1 – 3 – 5 – 6 & 1 – 3 – 4 – 6 and F2: 1 – 2 – 5 - 6.
Let x and y be the gain function of the corresponding paths F1 and F2
In F1, The gain function of the path 1 – 3 – 5 - 6 can be expressed as

,375.0
8

3
x

x
x =→ 5.0*375.0

4
3*

3
2*

8
3

8
3

x
xx =→

In the path 1 – 3 - 4– 6, the expression becomes

 ,375.0
8

3
x

x
x =→ 0833.0*375.0

3
1*

4
1*

8
3

8
3

x
xx =→

In F2, The gain function of the 1 – 2 – 3 – 6 can be expressed as

y
y

y 5.0
2

=→ , 375.0*5.0
4
3*

2
1*

22
y

yy =→

Maximum out flow = sum of the gain function of x + sum of the gain function of y.

Iteration 1

When x = 1, Augment flow along (1, 3, 5, 6)

The gain function x
x 375.0

8
3 =

 0.375x * 0.5 = 0.1875
Augment flow along (1, 3, 4, 6)
 0.375x * 0.0833 = 0.03124

When y = 1, Augment flow along (1, 2, 5, 6)

The gain function y
y 5.0
2

=

 0.5y * 0.375 =0.1875

Maximum out flow = 0.1875 + 0.03124 + 0.1875 = 0.4062

Iteration 2

When x = 2, Augment flow along (1, 3, 5, 6)

The gain function 75.02*375.0
8

3 ==x

 0.75 * 0.5 = 0.375
Augment flow along (1, 3, 4, 6)
 0.75 * 0.0833 = 0.06248

When y =2, Augment flow along (1, 2, 5, 6)
The gain function y / 2 = 0.5y = 0.5 * 2 = 1
 1* 0.375 = 0.375

Maximum out flow= 0.375 + 0.06248 + 0.375 = 0.8125

Proceeding like this, we will increase the value of x and y, up to x = 8 and add with y = 2. Since the

flow value cannot exceed the capacity.

Result: Maximum in flow = 5
 Maximum out flow = 2.125

Time complexity

Let V be the number of vertices, V0 be the number of end vertices and E be the number of edges. Each
iteration of the while loop takes O (E) time. Then the above algorithms work with O (E Vo) time. That is,
O (E V) time complexity.

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 43

IV. APPLICATIONS
In traditional networks, there is an implicit assumption that flow is conserved on every arc. Many

practical applications violate this conservation assumption. The gain factors can represent physical
transformations of one commodity into a lesser or greater amount of the same commodity. Some examples
include: spoilage, theft, evaporation, taxes, seepage, deterioration, interest, or breeding. The gain factors can
also model the transformation of one commodity into a different commodity. Some examples include:
converting raw materials into finished goods, currency conversion, and machine scheduling. We explain the
latter two examples next.

Currency Conversion

We use the currency conversion problem as an example of the types of problems that can be modeled
using generalized flows. Later, we will use this problem to gain intuition. In the currency conversion problem,
the goal is to take advantage of discrepancies in currency conversion rates. Given certain amount of one
currency, say 1000 U.S dollars, the goal is to convert it into the maximum amount of another currency, say
French Francs, through a sequence of currency conversions. We assume that limited amounts of currency can be
treated without affecting the exchange rates.

Scheduling unrelated parallel machines
 As a second example, we consider the problem of scheduling N jobs to run on M unrelated machines.
The goal is to schedule all of the jobs by a pre specified time T. Each job must be assigned to exactly one
machine. Each machine can process any of the jobs, but at most one job at a time. Machine i requires a pre-
specified amount of time P i j to process job j.

REFERENCES

[1] R. K. Abuja, T. L. Magnanti, J. B. Orin, “Network Flow,” Prentice-Hall, Englewood Cliffs, N. J. (1993)..
[2] J.A. Bandy and U. S. R. Marty,”Graph theory with applications,” Elsevier SciencePublishing co., Inc., U. S. A. (1976)..
[3] L.R. Ford and D.R. Fulkerson,”Flows in networks,” Princeton University Press, Princeton, NJ. (1974).
[4] F. Glover, J.Hultz, D. Klingman, and J. Stutz. “Generalized networks: A fundamental Computer based planning tool. Management

Science,” 24:1209-1220, (1978).
[5] H. S. Wolf, Algorithms and Complexity, Prentice – Hall International, Inc., U. S. A. (1986).
[6] A. Anto Kinsley and B. uma Maheswari, “Design of algorithms to Generalsed Maximum flow network Problem,” International

Journal of Advanced Research in Computer Science and Technology(IJARCST 2016) Vol.4,Issue 1 (Jan. – Mar 2016) pp:31- 34.
[7] A. Anto Kinsley and B. uma Maheswari, “A Pre-Flow Push algorithm to Generalsed Maximum flow Problem,” International

Journal ofEngineering Science and Research Technology(IJESRT) Feb. 2016 pp:547-553.
[8] A. Anto Kinsley and B. uma Maheswari, “Design of algorithms to Maximum flow Problems in tree flow Networks,” International

Journal of Scienc, Engineering and Technology(IJSETR) Vol.5,Issue 4, April 2016 pp:1015-1018.

A.Anto Kinsley et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 8 No. 02 Feb 2017 44

