
LZW Lossless Text Data Compression
Algorithm – A Review

Ezhilarasu P
Associate Professor, Department of Computer Science and Engineering
Hindusthan College of Engineering and Technology, Coimbatore, India.

prof.p.ezhilarasu@gmail.com

Karthik Kumar P
Research Scholar

PSG College of Technology, Coimbatore, India

Abstract: In this paper, we discuss LZW data compression techniques for strings with various
conditions. Initially, string contains the single character with the varied string length of 10, 20, 30, 40, 50,
and 100 taken. Then alternate characters and finally the mixed combination of characters taken for the
compression. Its compression ratio, space savings also calculated. Each condition compared with other
conditions.

Keywords: LZW, Compression, Encoder, Decoder.
I. INTRODUCTION

The system of reducing the size of a data file referred to as data compression [1]. Data compression involves
the tradeoff called space-time complexity. If the data stored as it is, then there is no need to compress and
decompress the data. We need vast amount of storage for that. However, in many situations there is a need for
applying resource management techniques. In compression techniques, there is a need for managing the storage
efficiently.

Because of fewer amounts of data, transfer of data from source to destination can be performed with less
amount of time. For instance, if the data size is 50MB and the transfer rate between source and destination is 25
kbps. The time need for the transfer can be calculated by the equation 1.

Time for transfer = Input data / transfer rate (1)
1 MB = 1024 KB and 1 KB = 8 kb

 Input data = 50 MB
 = 50 * 1024 KB
 = 50 * 1024 * 8 kb
 Transfer rate = 25 kbps
So time taken for transfer = (50 * 1024 * 8) / 25
 = 2 * 1024 * 8
 = 16384 seconds
If the given data compressed into 20MB, then the time taken for transfer will be 6553.6 seconds.
If the allowed storage for destination machine is 40GB, then the target machine can store the following

number of files by using the equation 2.
Number of files can be stored = Total amount of storage / Size of the file (2)
 1GB = 1024 MB
 = 40 GB / 50 MB
 = 40 * 1024 MB / 50 MB
 =819.2 files
So destination system can store 819 files for uncompressed data.
For compressed file, it can store
 = 40 * 1024 MB / 20 MB
 = 2 * 1024
 = 2048 files.
The space and time complexity based on compression ratio. It can be calculated by using the following

equation 3.

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 617

Compression ratio = Actual data / Compressed Data (3)
 = 50 MB / 20 MB
 = 2.5
The compressed data takes less storage with faster transfer rate than original data.
In the file, we have many types. It may be a text file, image file, audio or video file. The compression ratio

differs for each file types.
The data compression also has some limitations. For compressing the video files of vast size sometimes, we

need special hardware. For compression and decompression, we need some amount of time. In some time, the
time may be more. During compression and decompression, the some data may be lost. The limitations summed
as

1. Processing cost
2. Processing time
3. Quality of data

In compression, we have the following types
1. Lossy compression (Destination data size is less than source data)
2. Lossless compression (Destination data size is equal to source data).

In this paper, we discuss LZW lossless data compression algorithm. Lempel–Ziv–Welch (LZW) is a universal
lossless data compression algorithm. It created by Abraham Lempel, Jacob Ziv, and Terry Welch. It was
published by Welch in 1984 as an improved implementation of the LZ78 algorithm published by Lempel and Ziv
in 1978 [2].

II. RELATED WORK

 Ziv J and Lempel A [1977] proposed a universal algorithm for sequential data compression [3]. Then after a
year [1978] they proposed a compression method about the cCompression of individual sequences using
variable-rate coding [4]. Bell T, Witten I and Cleary J [1990] discussed lossless compression. It focuses on text
compression and language modeling. It contains numerous statistical studies on text compression [5].
 Mark Nelson and Jean-loup Gailly [1995] explained the basics of data compression algorithms and classified
the compression area. It includes lossless and lossy algorithms, the modeling-coding paradigm and statistical
and dictionary schemes [6].David Salomon [2000] described many different compression algorithms together
with their benefits, disadvantages, and common usages. He gave a broad overview on lossless and lossy
compression [7].
 Khalid Sayood [2000] gave an introduction into the wide field of coding algorithms, both lossless and lossy,
with mathematical and theoretical background information [8].Ross Williams [1991] described lossless
compression algorithms based on Markov models [9]. Ian Witten, Alistair Moffat and Timothy Bell [1999] gave
an introduction about information retrieval. They also emphasized on indexing, querying and implementation
aspects mostly based on lossless compression [10]. Many books on data compression [11, 12, 13, 14, 15] and
research paper on LZW compression [16] also described in detail about data compression and LZW
compression.

III. LZW ENCODING ALGORITHM

Initialize Dictionary by using with 256 ASCII codes for representing 256 characters; values are from 0 – 255.
1. Initialize codeword as 255 and starting input character as first character of the given input.
2. If not the end of the input, Suffix the input. If the end of the input then go to step 6.
3. Check the input character(s). If available in the dictionary then go to step 2.
4. Increment codeword by one then assign that value to the collection of characters.
5. Take the immediate input character after the codeword then go to step 2.
6. Stop the process.

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 618

IV. LZW DECODING ALGORITHM

The LZW decompressor produces the same string table during decompression. It is the reversal of LZW
encoding algorithm.

A.LZW ENCODING
TABLE I. FOR STRING LENGTH 10 AND SINGLE CHARACTER

EEEEEEEEEE(LENGTH 10)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EE
256 257 EEE
257 258 EEEE
258 EEEE(REMAINING)

The string length is 10
Actual space needed = 10 * 8 = 80 bits

AFTER ENCODING
Space needed = 4 * 12 = 48 bits

TABLE II. FOR STRING LENGTH 20 AND SINGLE CHARACTER

EEEEEEEEEEEEEEEEEEEE(LENGTH 20)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EE
256 257 EEE
257 258 EEEE
258 259 EEEEE
259 260 EEEEEE
259 EEEEE(REMAINING)

The string length is 20
Actual space needed = 20 * 8 = 160 bits

AFTER ENCODING
Space needed = 6 * 12 = 72 bits

TABLE III. FOR STRING LENGTH 30 AND SINGLE CHARACTER

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE(LENGTH 30)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EE
256 257 EEE
257 258 EEEE
258 259 EEEEE
259 260 EEEEEE
260 261 EEEEEEE
261 262 EEEEEEEE
256 EE(REMAINING)

The string length is 30
Actual space needed = 30 * 8 = 240 bits

AFTER ENCODING
Space needed = 8 * 12= 96 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 619

TABLE IV. FOR STRING LENGTH 40 AND SINGLE CHARACTER

EE(LENGTH 40)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EE

256 257 EEE
257 258 EEEE
258 259 EEEEE
259 260 EEEEEE
260 261 EEEEEEE
261 262 EEEEEEEE
262 263 EEEEEEEEE
258 EEEE(REMAINING)

The string length is 40
Actual space needed = 40 * 8 = 320 bits

AFTER ENCODING
Space needed = 9 * 12= 108 bits

TABLE V. FOR STRING LENGTH 50 AND SINGLE CHARACTER

EE(LENGTH 50)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EE
256 257 EEE
257 258 EEEE
258 259 EEEEE
259 260 EEEEEE
260 261 EEEEEEE
261 262 EEEEEEEE
262 263 EEEEEEEEE
263 264 EEEEEEEEEE
259 EEEEE(REMAINING)

The string length is 40
Actual space needed = 50 * 8 = 400 bits

AFTER ENCODING
Space needed = 10 * 12= 120 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 620

TABLE VI. FOR STRING LENGTH 100 AND SINGLE CHARACTER

EEE
EEEEEEEEEEEEEEEEEEEEEEEEEEE(LENGTH 100)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EE
256 257 EEE
257 258 EEEE
258 259 EEEEE
259 260 EEEEEE
260 261 EEEEEEE
261 262 EEEEEEEE
262 263 EEEEEEEEE
263 264 EEEEEEEEEE
264 265 EEEEEEEEEEE
265 266 EEEEEEEEEEEE
266 267 EEEEEEEEEEEEE
267 268 EEEEEEEEEEEEEE
263 EEEEEEEEE(REMAINING)

The string length is 100
Actual space needed = 100 * 8 = 800 bits

AFTER ENCODING
Space needed = 14 * 12= 168 bits

TABLE VII. FOR STRING LENGTH 10 AND ALTERNATE CHARACTER

EFEFEFEFEF(LENGTH 10)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FE
256 258 EFE
258 259 EFEF
257 260 FEF
70 F(REMAINING)

The string length is 10
Actual space needed = 10 * 8 = 80 bits

AFTER ENCODING
Space needed = 6 * 12 = 72 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 621

TABLE VIII. FOR STRING LENGTH 20 AND ALTERNATE CHARACTER

EFEFEFEFEFEFEFEFEFEF(LENGTH 20)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FE
256 258 EFE
258 259 EFEF
257 260 FEF
260 261 FEFE
259 262 EFEFE
259 EFEF(REMAINING)

The string length is 20
Actual space needed = 20 * 8 = 160 bits

AFTER ENCODING
Space needed = 8 * 12 = 96 bits

TABLE IX. FOR STRING LENGTH 30 AND ALTERNATE CHARACTER

EFEFEFEFEFEFEFEFEFEFEFEFEFEFEF(LENGTH 30)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FE

256 258 EFE
258 259 EFEF
257 260 FEF
260 261 FEFE
259 262 EFEFE
262 263 EFEFEF
261 264 FEFEF
264 FEFEF(REMAINING)

The string length is 30
Actual space needed = 30 * 8 = 240 bits

AFTER ENCODING
Space needed = 10 * 12 = 120 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 622

TABLE X. FOR STRING LENGTH 40 AND ALTERNATE CHARACTER

EF(LENGTH 40)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FE

256 258 EFE
258 259 EFEF
257 260 FEF
260 261 FEFE
259 262 EFEFE
262 263 EFEFEF
261 264 FEFEF
264 265 FEFEFE
263 266 EFEFEFE
259 EFEF(REMAINING)

The string length is 40
Actual space needed = 40 * 8 = 320 bits

AFTER ENCODING
Space needed = 12 * 12 = 144 bits

TABLE XI. FOR STRING LENGTH 50 AND ALTERNATE CHARACTER

EF(LENGTH 50)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FE
256 258 EFE
258 259 EFEF
257 260 FEF
260 261 FEFE
259 262 EFEFE
262 263 EFEFEF
261 264 FEFEF
264 265 FEFEFE
263 266 EFEFEFE
266 267 EFEFEFEF
265 268 FEFEFEF
70 F(REMAINING)

The string length is 50
Actual space needed = 50 * 8 = 400 bits

AFTER ENCODING
Space needed = 14 * 12 = 168 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 623

TABLE XII. FOR STRING LENGTH 100 AND ALTERNATE CHARACTER

EFE
FEFEFEFEFEFEFEFEFEFEFEF(LENGTH 100)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FE
256 258 EFE
258 259 EFEF
257 260 FEF
260 261 FEFE
259 262 EFEFE
262 263 EFEFEF
261 264 FEFEF
264 265 FEFEFE
263 266 EFEFEFE
266 267 EFEFEFEF
265 268 FEFEFEF
268 269 FEFEFEFE
267 270 EFEFEFEFE
270 271 EFEFEFEFEF
269 272 FEFEFEFEF
272 273 FEFEFEFEFE
271 EFEFEFEFEF(REMAINING)

The string length is 100
Actual space needed = 100 * 8 = 800 bits

AFTER ENCODING
Space needed = 19 * 12 = 228 bits

TABLE XIII. FOR STRING LENGTH 10 AND MIXED CHARACTER

EFGEEEGFGE(LENGTH 10)

OUTPUT
DICTIONARY

CODE WORD STRING
69 256 EF
70 257 FG
71 258 GE
69 259 EE

259 260 EEG
71 261 GF

257 262 FGE
69 E(REMAINING)

The string length is 10
Actual space needed = 10 * 8 = 80 bits

AFTER ENCODING
Space needed = 8 * 12 = 96 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 624

TABLE XIV. FOR STRING LENGTH 20 AND MIXED CHARACTER

FGGEEFEEGEFFGEGGGGEF(LENGTH 20)

OUTPUT
DICTIONARY

CODE WORD STRING
70 256 FG
71 257 GG
71 258 GE
69 259 EE
69 260 EF
70 261 FE

259 262 EEG
258 263 GEF
70 264 FF

256 265 FGE
69 266 EG

257 267 GGG
257 268 GGE
260 EF(REMAINING)

The string length is 20
Actual space needed = 20 * 8 = 160 bits

AFTER ENCODING
Space needed = 14 * 12 = 168 bits

TABLE XV. FOR STRING LENGTH 30 AND MIXED CHARACTER

FGGEEFEEGEEFGEEEGFGEFFGEGGGGEF(LENGTH 30)

OUTPUT
DICTIONARY

CODE WORD STRING
70 256 FG
71 257 GG
71 258 GE
69 259 EE
69 260 EF
70 261 FE

259 262 EEG
258 263 GEE
260 264 EFG
263 265 GEEE
69 266 EG
71 267 GF

256 268 FGE
260 269 EFF
268 270 FGEG
257 271 GGG
257 272 GGE
260 EF(REMAINING)

The string length is 30
Actual space needed = 30 * 8 = 240 bits

AFTER ENCODING
Space needed = 18 * 12 = 216 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 625

TABLE XVI. FOR STRING LENGTH 40 AND MIXED CHARACTER

FGGEEFEEGEEFGEEEGFGEFFGEGGGGEFFGGEEFEEGE (LENGTH 40)

OUTPUT
DICTIONARY

CODE WORD STRING
70 256 FG
71 257 GG
71 258 GE
69 259 EE
69 260 EF
70 261 FE
259 262 EEG
258 263 GEE
260 264 EFG
263 265 GEEE
69 266 EG
71 267 GF
256 268 FGE
260 269 EFF
268 270 FGEG
257 271 GGG
257 272 GGE
269 273 EFFG
272 274 GGEE
260 275 EFE
262 276 EEGE
69 E(REMAINING)

The string length is 40
Actual space needed = 40 * 8 = 320 bits

AFTER ENCODING
Space needed = 22 * 12 = 264 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 626

TABLE XVII. FOR STRING LENGTH 50 AND MIXED CHARACTER

FGGEEFEEGEEFGEEEGFGEFFGEGGGGEFFGGEEFEEGEFFGEGGGGEF (LENGTH 50)

OUTPUT
DICTIONARY

CODE WORD STRING
70 256 FG
71 257 GG
71 258 GE
69 259 EE
69 260 EF
70 261 FE
259 262 EEG
258 263 GEE
260 264 EFG
263 265 GEEE
69 266 EG
71 267 GF
256 268 FGE
260 269 EFF
268 270 FGEG
257 271 GGG
257 272 GGE
269 273 EFFG
272 274 GGEE
260 275 EFE
262 276 EEGE
273 277 EFFGE
266 278 EGG
271 279 GGGE
260 EF(REMAINING)

The string length is 50
Actual space needed = 50 * 8 = 400 bits

AFTER ENCODING
Space needed = 25 * 12 = 300 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 627

TABLE XVIII. FOR STRING LENGTH 100 AND MIXED CHARACTER

FGGEEFEEGEEFGEEEGFGEFFGEGGGGEFFGGEEFEEGEFFGEGGGGEFFGGEEFEEGEEFGEEEGFGE
FFGEGGGGEFFGGEEFEEGEFFGEGGGGEF(LENGTH 100)

OUTPUT
DICTIONARY

CODE WORD STRING
70 256 FG
71 257 GG
71 258 GE
69 259 EE
69 260 EF
70 261 FE

259 262 EEG
258 263 GEE
260 264 EFG
263 265 GEEE
69 266 EG
71 267 GF

256 268 FGE
260 269 EFF
268 270 FGEG
257 271 GGG
257 272 GGE
269 273 EFFG
272 274 GGEE
260 275 EFE
262 276 EEGE
273 277 EFFGE
266 278 EGG
271 279 GGGE
273 280 EFFGG
263 281 GEEF
261 282 FEE
266 283 EGE
259 284 EEF
268 285 FGEE
262 286 EEGF
268 287 FGEF
70 288 FF

270 289 FGEGG
279 290 GGGEF
288 291 FFG
274 292 GGEEF
282 293 FEEG
258 294 GEF
291 295 FFGE
278 296 EGGG
272 297 GGEF
70 F(REMAINING)

The string length is 100
Actual space needed = 100 * 8 = 800 bits

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 628

AFTER ENCODING
Space needed = 43 * 12 = 516 bits

V. LZW DECODING

The table 1 shows LZW encoding for the input EEEEEEEEEE. The output is 69,256,257,258. The
decoding is done by using codeword value. The output 69 replaced by the codeword E, 256 by EE, 257 by EEE
and 258 BY EEEE. The obtained results combined as E, EE, EEE, EEEE. The resultant output string will be
EEEEEEEEEE, which is similar to given input EEEEEEEEEE. This process used in table 2-18. The resultant
output same as that of input.

VI. RESULTS AND DISCUSSIONS

The compression ratio and space savings derived for three cases namely single character, alternate
character and mixed character. It tested for string of different length as 10,20,30,40,50 and 100. The results are
given in the table 19 & 20 and figure 1 & 2.

TABLE XIX. COMPRESSION RATIO FOR SINGLE, ALTERNATE AND MIXED CHARACTERS

COMPRESSION RATIO

S.NO
CHARACTER

COMBINATION
STRING LENGTH

10 20 30 40 50 100
1 SINGLE 1.66:1 2.22:1 2.5:1 2.96:1 3.33:1 4.76:1
2 ALTERNATE 1.11:1 1.66:1 2:1 2.22:1 2.38:1 3.51:1
3 MIXED 0.83:1 0.95:1 1.11:1 1.21:1 1.33:1 1.55:1

TABLE XX. SPACE SAVINGS FOR SINGLE, ALTERNATE AND MIXED CHARACTERS

SPACE SAVINGS

S.NO
CHARACTER

COMBINATION
STRING LENGTH

10 20 30 40 50 100
1 SINGLE 39.75% 54.95% 60% 66.22% 69.97% 78.99%
2 ALTERNATE 9.91% 39.75% 50% 54.95% 57.98% 71.51%
3 MIXED -20.48% -5.26% 9.91% 17.35% 24.81% 35.48

Fig. 1. Compression ratio for single, alternate and mixed characters

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 629

Fig. 2. Space savings for single, alternate and mixed characters

VII. CONCLUSION

 The obtained results show that LZW algorithm provides better compression ratio and space savings as string
length increases for single, alternate and mixed character. This paper will help the students to understand the
data compression using LZW algorithm. The prior knowledge about data compression is also not needed for
understanding this paper.

VIII. REFERENCE
[1] Available online at: http://en.wikipedia.org/wiki/Data_compression
[2] Available online at: http://en.wikipedia.org/wiki/Lempel- Ziv-Welch
[3] Ziv, J., and Lempel, A., “A universal algorithm for sequential data compression,” IEEE Transactions on Information Theory, Volume

23, Number 3, May 1977, pages 337-343.
[4] Ziv, J., and Lempel, A., "Compression of individual sequences via variable-rate coding," IEEE Transactions on Information Theory,

Volume 24, Number 5, September 1978, pages 530-536.
[5] Timothy Bell, John Cleary and Ian Witten [1990],” Text Compression”, Prentice-Hall, Englewood, United States of America, 318

pages
[6] Mark Nelson and Jean-loup Gailly [1995], “The Data Compression Book”, M&T Books, New York, United States of America, 2nd

edition, 541 pages
[7] David Salomon [2000], “Data Compression: The Complete Reference” Springer, New York, Berlin, Heidelberg, United States of

America, Germany, 2nd edition, 823 pages
[8] Khalid Sayood [2000], “Introduction to Data Compression”, Morgan Kaufmann Publishers, Burlington, United States of America, 2nd

edition, 600 pages
[9] Ross Williams [1991], “Adaptive Data Compression”, Kluwer Books, Norwell, United States of America, 382 pages
[10] Ian Witten, Alistair Moffat and Timothy Bell [1999],” Managing Gigabytes: Compressing and Indexing Documents and Images”,

Morgan Kaufmann Publishing, San Francisco, United States of America, 2nd edition, 519 pages
[11] David Salomon and Giovanni Motta [2010], “Handbook of Data Compression”, Springer London
[12] Storer, J.A., (1988) Data Compression , Computer Science Press, Rockville, MD
[13] Blelloch, E., 2002. Introduction to Data Compression, Computer Science Department, Carnegie Mellon University.
[14] Lynch, Thomas J., Data Compression: Techniques and Applications, Lifetime Learning Publications, Belmont, CA, 1985
[15] Storer, James A., Data Compression: Methods and Theory, Computer Science Press, Rockville, MD, 1988
[16] Nelson, Mark, "LZW Data Compression," Dr. Dobb's Journal, Volume 14, Number 10, October 1989, pp 29-37

Ezhilarasu P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 11 Nov 2015 630

	LZW Lossless Text Data CompressionAlgorithm – A Review
	Abstract
	Keywords
	I. INTRODUCTION
	II. RELATEDWORK
	III. LZWENCODING ALGORITHM
	IV. LZWDECODING ALGORITHM
	V. LZWDECODING
	VI. RESULTS AND DISCUSSIONS
	VII. CONCLUSION
	VIII. REFERENCE

