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Abstract— In Traditional Keyword search system over relational data bases, a keyword query is 
submitted by the user to the system and the relevant results are retrieved, where the user has restricted 
knowledge about the data. While issuing queries the user often feels “Left in the dark” and for finding the 
information the user has to use try-and see approach. Here we guild the information based on the user 
needs for constructing a keyword query that provides easy access to data from the database. Low ranking 
quality is often observed even though easy access to data is provided by the keyword queries on 
databases. For such hard queries, the user may advise to the user alternative queries. We propose a novel 
framework to predict hard query using algorithms and ranking methods and provide relevant results 
according to the user needs with high accuracy. 
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I. INTRODUCTION 

Data mining is the process of sifting through very large amounts of data for useful information. Now-a-days 
much attention is observed in the keyword query interfaces (KQI) for relational databases for searching and 
exploring the data [1], [2]. Keyword queries often suffer from ambiguity known as hard queries. User 
information needs must be identified by the KQIs behind keyword queries and rank the answers to be displayed 
on the top of the list [1], [3]. 
       The degree of difficulty for queries over databases is predicted and characteristics of those hard queries are 
analyzed. The Structured Robustness (SR) score is used to measure the query difficulty based on the rankings of 
original and corrupted versions of the data base. An algorithm is used to compute the SR score to enhance the 
performance. SR score is estimated with efficient approximation algorithms that can be computed with small 
time overhead. . INEX [4] and SemSearch are the two standard benchmarks that have been provided for 
keyword search methods over databases. The ranking quality of the ranking algorithms is effectively predicted 
by the SR score. The SR score computation time is negligible compared to the query execution time. 

II. RELATED WORK 
       To predict hard queries over unstructured text documents two methods have been proposed. 
        Pre-retrieval methods [6], [9] without computing the results the difficulty of a query is predicted. 
Specificity, ambiguity or term relatedness is measured to predict the query difficulty using statistical properties. 
The statistical characteristics are like the number of attributes that are relevant to the query terms or the number 
of entities that are related to the query terms [10]. If the query terms are more distinct, then the query will be 
very easier. But have low performance. 
       Post-retrieval methods: The results of a query are utilized for predicting the query difficulty. These 
methods have better prediction accuracy and are categorized as below. 
       Clarity score based:  This method assumes that the user is interested in very few topics. So the query is said 
to be easy if its results belongs to very few topics [5], [6], [7], [11]. However, domain knowledge is required 
about the datasets. So, the idea of clarity score for queries over databases is extend. 
       Ranking-score-based: The similarity of the query and the document returned by the retrieval systems is 
estimated using ranking score. Based on the score distribution of results the degree of difficulty of a hard query 
is measured [8]. 
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Robustness-based: This method contends the results of an easy query are comparatively stable against the 
disruption of queries [12], documents or ranking algorithms. The proposed system falls in this category. 

III. DATA AND QUERY MODELS 
A database is modeled as a set of entity sets where each entity set S comprises a collection of entities E. For 

instance teams and players are two entity sets in cricket database. Fig 1 depicts a portion of the data set where 
each sub tree root is named as team and represents an entity. Each entity has set of attribute values Ai, 1 ≤ I ≤ 
|E|. Each attribute value is a collection of terms. Based on current un-structured and semi-structured retrieval 
methods, we ignore stop words that appear in the attribute values. The attribute T is belonged to every attribute 
value A and is written as A Є T. For example, Virat Kohli, Anil and Shane Watson are three attribute values in 
the team entity shown in the cricket team entity shown in the figure. Node 2 depicts the attribute of Indian team, 
which is coach. 

 
Figure 1. Cricket database Fragment 

       The above models an abstract data model. In this paper, we ignore the physical representation of data. That 
is, an entity could be stored as a set of normalized related tables or in an XML file. This model has been used to 
a great extent in works data-centric XML retrieval [4] and entity search [2], and there is a great advantage so it 
can be mapped easily to either XML or relational data. Further, if a KQI method depends on the internal 
complexities of the database design, it will not be strong and will have considerably low degree of effectiveness 
over different databases. Therefore, the principled formal models have developed that cover all databases and 
data formats reasonably well, we do not consider the internal complexities or the database design structure or 
data format in models. 
       A keyword query is a defined as set Q = {q1. . . q1|Q|} of terms, where the number of terms in Q is denoted 
as |Q|. An entity E is treated as an answer to Q if a term qi in Q is present in one of its attribute values A, written 
as qiЄA1. Given a database DB and a query Q, the retrieval function g (E, Q, DB) gives a real number that 
reflects the relevance of the entity EЄDB to the keyword query Q. Given a database DB and a query Q, the 
system returns entities as a ranked list in DB named L(Q, g, DB) the entities E are placed in order or decreasing 
of the value g(E,Q,DB). 

IV. RANKING ROBUSTNESS PRINCIPLE 
       The degree of the difficulty of a hard query is correlated with the robustness of ranking across the corrupted 
and the original versions of the database called the Ranking Robustness Principle.  
PROPERTIES OF HARD QUERIES ON DATABASE 
    It is a well-established fact that the candidate answers of a query are diverse to a greater extent; the harder 
the query is over a collection of text documents. We use this idea and extends it for queries over relational 
databases and suggest three sources of difficulty for answering a keyword query over a database as follows: 
1) If the query term matches more entities, then there is less specificity of the query and the harder it is to 
answer properly. For instance, there is more than one player named Shane in the T20 data set. If a user submits 
the query Q2: Shane, the KQI must resolve the expected Shane that satisfies the user’s information need. As 
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opposed to Q2, Q3: Sehwag matches smaller number of people in the cricket DB, so it is easier for the KQI to 
return its relevant results. 
2) Each attribute describes various aspects of an entity and determines context of terms in its attribute values. If 
various attributes are matched with a query in its candidate answers, then it will have a wider collection of 
potential answers in the database, and hence it has higher level of ambiguity at the attribute level. For instance, 
some candidate answers for query Q4: AnilKumble in IPL DB contain its term in their mentor and some contain 
its term in their Ex-captain. A KQI must identify the desired matching attribute for AnilKumble to find its 
relevant answers. As opposed toQ4, query Q5: Virat Kohli does not match any instance of attribute mentor. 
Hence, a KQI already knows the desired matching attribute for Q5 and the task is easier to perform. 
3) Each entity set comprises the data about a various type of entity and defines another level of context for 
terms. Therefore, if a query is matching entities from major entity sets, it will have greater level of ambiguity at 
entity level. For instance, T20DB contains the information about teams in an entity set called team and the 
information about the mentor involved within the team in another entity set called mentor. Consider query Q6: 
ex-player over IPL DB data set whose candidate answers come from both entity sets. However, teams having 
mentor and ex-player cannot both satisfy information need of query Q6. A KQI has a difficult task to do as it 
has to identify if the information need behind this query is to find players who are ex-players or current players. 
In contrast to Q6, Q7: owner wicket-keeper matches only entities from team entity set. It is less hard for a KQI 
to answer Q7 than Q6 as Q7 has only one potential desired entity set. 

V. STRUCTURED ROBUSTNESS 
      Corruption of organized data: The primary challenge we face with the usage of the Ranking Robustness 
Rule for databases is with defining the data corruption for structured data. For defining the data corruption, we 
create a model database using a conceptive and probabilistic model based on the building blocks which 
comprise of terms, entity sets, attributes and attribute values. A sample at random of such a probabilistic model 
is what we define as a corrupted version of the DB. For retrieval function h and query S, we will rank the 
candidate answers in the DB and its corrupted versions say DB’, DB”… and the ranked lists are acquired say L, 
L’, L”… respectively. The lesser the similarity between L and L’, L” … the more hard Q will be. 
    Structured Robustness computation: We use Spearman rank correlation [13] to compute the similarity of the 
answer lists. This value ranges between -1 and 1, where -1 indicated perfect negative correlation, 0 indicates 
almost no correlation and 1indicates perfect positive correlation. The Structured Robustness score (SR score), 
for a query Q over the database DB the given recuperation function h:  
SR (S, h, DB, XDB) 
                   =E{Sim(L(S, h, DB), L(S, h, XDB))} 
Here the Spearman rank interdependencies denoted by Sim between the ranked answer lists. 

VI. STRUCTURED ROBUSTNESS(SR) PRINCIPLE 
The Structured Robustness Principle, based on the top K result entities computes the exact SR score. Some 

statistics were used by each ranking principle about attributes values or query terms over the whole content of 
DB. The examples of that census are the number of accuracies of a query term in overall attributes values of the 
DB or in each attribute and entity set the total number of attribute values that occur. 

VII. APPROXIMATION PRINCIPLESS 
Here we propose approximation principles to improve the proficiency of SR principle. The methods 

proposed are autonomous of the prime ranking principle. 
Query-specific Attribute values Only Approximation: It padded only those attribute values in the database 
that match at least one query term. This approximation principle makes use of the following observations: 
Observation 1.The corruption effect is much lesser than the noise in the attributes that comprise query terms. 

Observation 2.The number of all attribute values in each entity is much larger than the number of attribute 
values that comprise at least one query term. 

Hence, the time spent on corruption is significantly decreased if we corrupt only the attribute values that contain 
query terms. 
Static Global Stats Approximation: The following observations are used in SGS-Approximation: 
Observation 3.If only the top-K result entities are padded, the change in the global DB statistics is not much. 
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(a)  SR Principle 
 

 
 

(b)  SGS-Approx 
 

Figure 2. Execution flows of SR Principle and SGS-Approx: (a) SR Principle. (b) SGS-Approx. 

Fig. 2(a) illustrates the flow of execution for SR Principle. After the ranked list of top K entities for S is got, 
the corruption module produces the entities that are corrupted and the global stats of DB are updated. Then, the 
corrupted results are passed by the SR Principle and the global statistics is updated to the ranking module to 
compute the corrupted ranking list. A large portion of the robustness calculation time is spent by the SR 
Principle on the loop that re-ranks the corrupted database, and for updating global statistics. Here the value of K 
is very small compared to the number of entities in the DB; the top K entities comprise a very little portion of 
the DB. Therefore, the global statistics change a little or remain unchanged. So, the global statistics is used for 
the original version of the DB and the corrupted entities are re-ranked. We are restricting the updating of global 
statistics by combining the corruption and the ranking modules together. So, during corruption the re-ranking is 
done progressively. SGS-Approx principle is shown in Fig. 2(b). 

VIII. IMPROVED SR-PRINCIPLE 
The main problem in the current SR-principle is that corrupting each column will take a lot of time for 

query processing. Instead, the entropy is calculated in the columns and will decide whether to corrupt the 
columns or not based on the obtained entropy value. The entropy of the column is calculated, if the entropy is 
above certain threshold the corruption is done. If the entropy is below the threshold value the corruption is not 
needed. By this way the query execution time is reduced. For example input is given to the Keyword Search 
system, then the time taken to execute the query and accuracy using SR and Improved SR-Principles are shown 
in the graphs. 
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Figure 3. Comparing (a) Accuracy and (b) Time using SR-Principle and Improved SR-Principle 

Fig. 3(a) and 3(b) shows the results using SR and Improved SR-Principle. In fig 3(a) the X-axis is taken as 
number of instances and y-axis as accuracy. In fig 3(b) the X-axis is taken as number of instances and Y-axis as 
time taken in milliseconds. Thus, using the Improved SR-Principle the accuracy is increased and query 
execution time is decreased compared to SR-Principle. 

IX. CONCLUSION 
       By analyzing the characteristics of a query the hard queries are predicted. A novel Principle called SR 
Principle is used to predict the hardness of a query and QAO-Approximation for corruption of attributes over 
original database and the similarity is computed over the corrupted and the original versions of database and the 
effectiveness of keyword queries is predicted. To improve the accuracy and reduce the query execution time the 
entropy is calculated for the columns and will decide to corrupt the database or not. 
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