
Enigmatic Power of Turing Machines: A
Review
Amandeep Kaur

M.Tech Scholar, Central University of Punjab
Bathinda, India

Abstract— Automata are said to be theoretical devices which help in understanding the reasoning behind
computations and are considered to be ideal rather than realistic. This is because the actual computers
cannot have infinite memory as assumed in some automata. The Turing machine is a simple yet powerful
mathematical model which is used for accepting and translating languages. It can also be used for
evaluating functions. In this paper, the basic terminology related with Turing machine, which accounts
for its high computing power, its uses in various areas, its variants, its relation with Artificial Intelligence
has been discussed.

Keywords-Automata, Turing Machine, Artificial Intelligence
I. INTRODUCTION

Automata have been playing a continuously increasing, and have by now attained a considerable, role in
natural sciences. This process is going on for several decades. During the last part of this period, Automata have
begun to invade some parts of Mathematics, too particularly, but not exclusively, Mathematical Physics or
Applied Mathematics [1]. Named after Alan M. Turing (1912-1954), the brilliant English mathematician and
philosopher whose seminal paper in 1936 marked the beginning of the theory of computation, Turing Machine
accounts to be a theoretical model having Random Access Memory. Turing also pioneered the fields of artificial
intelligence and chess-playing by computer, as well as that of morphogenesis in biology, and was instrumental
in breaking “Enigma”, the German naval code during World War II [2]. Turing Machine is a powerful Automata
having a Read and Write memory which allows it to access the symbols from the Input Alphabet (∑) in any
arbitrary order, where Input Alphabet is a set consisting of the input symbols. Turing machines seem to form a
stable and maximal class of computational devices, in terms of the computations they can perform. Turing
machines are designed to satisfy simultaneously three criteria:

• They should be automata; that is, their construction and function should be in the same general spirit as
for automata.

• They should be as simple as possible to describe, define formally, and reason about.
• They should be as general as possible in terms of the computations they can carry out [3].

II. STRUCTURE OF A TURING MACHINE

A Turing machine consists of an infinitely long tape divided into individual cells, a movable “head" to read
and write characters on the cells, and a program that dictates how the head should react to the computations
made by the machine. The tape extends infinitely to the right, with each successive cell containing exactly one
symbol from the infinite alphabet ∑ = (a1; a2;an; b), where b is called a blank symbol. The Turing machine
program invokes a infinite collection of Turing states Q = (q0; q1;......; qk; qh), where qh denotes the
distinguished halting state.

In essence, a Turing machine consists of a finite state control unit and a tape. Communication between the
tape and the finite control unit is provided by a single head, which is used to read the symbols from the tape and
can also change those symbols, which means it can Read as well as Write. The head can move in both the
directions- Left as well as Right unlike other Automaton in which the Head was able to move only in one
direction.

At each step, a Turing machine can perform two functions, which depend on its current state and the current
symbol under the Read and Write Head.

• Step (i): Put the Control Unit in a new state.
• Step (ii): Either: Write a symbol in the cell of the tape under Read-Write Head replacing the one

already under the head. Or: Move the Read-Write Head one cell of the tape to the left or right .
The input for the Turing machine is represented by the prepared initial pattern on the tape, and the output of

the machine is given by the existing symbols on the tape when the machine reaches the halting state qh [4].
A. Formal Definition

A Turing machine is a quintuple (Q, ∑, δ, q0, H), where

Amandeep Kaur / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 427

• K is a finite set of states;
• ∑ is an alphabet, containing the blank symbol b, but not containing the symbols L and R.
• q0 ɛ K is the initial state;
• H is the set of halting states and is a proper subset of Q.

δ, the transition function, is a function from (Q \ {qh}) x A (Q \ {q0}) x A x {L; N; R}. This function takes as
input, the present state which is not the Halting state and current symbol under the Head, and outputs the next
state which is not the initial state, new symbol to be written and movement of the head to the Left (L) or Right
(R). When it is not accepting anything it is said to be Not Moving (N).
B. Acceptance of a String by Turing Machine:

A string α is said to be accepted by a Turing machine if, when started in the initial state with the head
positioned on the left-most character of the input string and the tape otherwise empty, the Turing machine halts
and the state at that time is an accepting state. A language is recognized by a Turing machine if it is the set of all
words accepted by the machine.

III. TERMINOLOGY RELATED TO TURING MACHINE

The basic terms and definitions related with the Turing machine have been discussed under the following
heads.
A. Turing Recognizable or Recursively Enumerable Language

A language is Turing-recognizable or Recursively Enumerable if there is a Turing machine which recognizes
it. A language is Turing-decidable or Recursive if there is a Turing machine which recognizes it which halts for
all inputs.
B. Relation between Turing Decidable and Turing recognizable languages

Turing Decidable languages can be more formally defined by a statement that there exists a TM M such that
for every string w, M running on input α halts and either rejects or accepts the string. And for Turing
Recognizable languages there exists a TM M such that for every string w, M running on input α either halts and
accepts or rejects α, or runs forever. As shown in Figure 1, Turing Decidable languages are a proper subset of
Turing recognizable languages.

Figure 1: Turing Decidable Languages

C. Turing Machines and Halting

One way for a Turing machine to accept input is to end in a final state. Another way is acceptance by
Halting. A Turing machine is said to halt if it enters a state q, scanning a tape symbol X, and there is no move in
this situation. That is δ(q,X) is undefined. In general, it is assumed that a Turing Machine always halts when it is
in accepting state.
D. Recursive Languages

It is not always possible to require that a TM halts even if it does not accept the input. Turing machines that
always halt, regardless of accepting or not accepting, are good models of algorithms for decidable problems.
Such languages are called Recursive.

IV. AREAS WHERE TURING MACHINES ARE USED

A short introduction to the areas or subjects, where Turing Machines are used, is given in this section. More
specifically, these are used in either Computation Theory or in Complexity Theory.
A. Computation Theory

Amandeep Kaur / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 428

This subject is concerned with the computability of functions and tells whether what can be computed by the
Turing Machine and what cannot be. Various concepts covered under the computation theory where Turing
Machines are used, are discussed below:

1) Universal Turing Machine: These are the machines which are said to simulate the work of any other
Turing Machine. Universal Turing Machines are the central ingredient when non-computable functions are
studied. Most common way to construct a Universal Turing machine is to use a multiple-tape Turing
Machine. Then it can be shown that such a Turing Machine can be simulated by a single-tape Turing
Machine.

2) A Busy Beaver: A Busy Beaver (BB) is said to be a binary Turing Machine which writes a whole lot of 1's
on the cells of the tape before halting on a particular input. An open contest is going on, where the goal is
to construct a Busy Beaver with less than some n amount of states and produces the largest amount of 1’s.

3) Boolean Circuits: Given a Turing machine, it is possible to construct a Boolean circuit which can simulate
all its computations if just we put a bound on the Turing machines memory (i.e., the number of cells in the
tape is finite).

B. Complexity Theory

Complexity is usually defined as the number of steps or memory taken by a particular function to compute
results. Various concepts covered under the complexity theory where Turing Machines are used, are discussed
below:

1) Unsolved Problem in Complexity Theory: A very famous and at the moment unsolved problem in
complexity theory is the whether P=NP? problem. P is the class of decision problems which can be solved
by a Turing machine in polynomial time, and NP is the class of decision problems which can be solved by
a non-deterministic Turing machine in polynomial time. The fact that if one can find just one problem in
the class NP-complete, which is a special subset of NP which is also in P, then all of NP is inside P makes
it an essential tool for studying P=NP?

2) Probabilistic Turing Machine: A non-deterministic Turing machine which chooses between its
possible transitions in a random way to solve a problem is called a Probabilistic Turing Machine. For each
possible transition there is an associated probability and therefore, the end result of the Turing machine
will have some probability of being correct. By running the algorithm several times it is possible to
minimize the chance of the result being incorrect.

3) Non Determinism: It seems that non-determinism makes an algorithm more powerful when viewing its
time usage. But when viewing space usage it is known that PSPACE=NPSPACE. Non-deterministic
Turing machines which use polynomial space can be simulated by deterministic Turing machines which
also only use polynomial space [6].

V. TURING MACHINE VARIANTS

There are many variations that can be made to a basic Turing Machine, two of which have been discussed
under the following heads:
A. Multitape Turing Machines

A Multitape Turing Machine is like an ordinary Turing Machine but it has several tapes instead of one tape.
Initially the input starts on first tape and other tapes are left blank. The transition function is allowed to to read,
write and move the heads on all the tapes simultaneously. This means that it is possible to read and write on
multiple tapes and move in different directions. A Multitape Turing Machine is equivalent in power to an
ordinary Turing Machine. Two Turing Machines are said to be equivalent if they recognize the same language,
So it is possible to convert a multitape Turing machine to a single tape Turing Machine.
B. Non Deterministic Turing Machines

This machine can be achieved by converting the Deterministic part of Turing machines into
Nondeterministic. Each time a nondeterministic move is made, it can be thought as a branch or “fork” to two
simultaneously running machines. Each machine gets a copy of the entire tape. If any one of these machines
ends up in an accepting state, then the input is said to be accepted. Nondeterminism does not affect the power of
the Turing Machine model. Every Nondeterministic Turing Machine has an equivalent deterministic Turing
Machine.
C. Restricted Turing Machines

This Turing Machine restricts the infinite length of the tape to a tape that is infinite only to the right. This
machine is also forbidden to print a blank as the replacement tape symbol. With these restrictions, it is assumed
that the Instantaneous Description consists of only non blank symbols and they always begin at the left end of
the input. There are several configurations in which Turing machines can be restricted.

Amandeep Kaur / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 429

1) Turing Machines with Semi Infinite Tapes: In this kind of restricted Turing machine, there are no cells
to the left of the initial head position.

2) Multistack Machines: These are based on generalizations of Pushdown Automata. Here the finite
control can push and pop symbols from multiple number of stacks.

3) Counter Machines: A counter machine is sometimes considered a restricted multistack machine. It
generally has same structure as multistack machine, but in place of stack is a counter. Counters hold
nonnegative integers. Counter is incremented and decremented in the same way as push and pop operations
are performed on the stack [12].

VI. TURING MACHINE AND ARTIFICIAL INTELLIGENCE

A Turing machine can be seen as a metaphor of the human brain. “Alan Turing’s classical paper introduces
the Turing Machine as a metaphor of a man in the process of computing a real number and whose human
memory is necessarily limited” [7]. John Von Neumann raised the question how the brain, which is analogue,
parallel and error-prone, could perform multistep computations without being swept away by biological noise
[8]. A Turing machine can be made to perform the multi step computations as well by considering its various
variants.

Turing machines remain adequate models of the conscious brain, and raise important novel issues for
neuroscience. Among neuroscientists, however, this metaphor quickly fell into disrepute because it neglected
aspects of the architecture of the brain that do not resemble those of a classical Turing device [7]. First, with a
hundred billion processors, the architecture of the brain supports massive parallel processing [9]. Second,
individual neurons exhibit complex and gradual behaviour unlike the digital circuits of a Turing machine, and
populations of cells can operate with entire probability distributions [10]. Third, the brain is an evolved learning
system whose architecture adapts at multiple timescales [11]. Despite these differences, the human brain can be
slow and serial in executing some tasks. So concepts of implementation of Brain Turing Machines by the neural
architectures are evolving and are an open research area.

VII. CONCLUSIONS

From this paper, it is concluded that Turing machine is a powerful model which can simulate the behavior of
brain and can be an important part of neuroscience. Its power can be accounted by help of its structure which
can be implemented in various ways. These are called its variants. Various variants of Turing Machines exhibit
different functionalities to increase the computing capabilities but the power remains the same. Turing Machines
are employed theoretically in various areas of research in complexity and computability theory. So, Turing
machine is said to be a powerful automata which can compute complex problems and it is also said that if
anything cannot be computed by a Turing Machine, it cannot be computed by a Computer as well.

REFERENCES
[1] J. V. Neumann, “The General and Logical Theory of Automata”, Design of Computers,Theory of Automata and Numerical Analysis,

Volume 5, Sept. 20, 1948, Pasadena, California.
[2] A. Hodges, “Alan Turing: The Enigma”, New York: Simon Schuster, 1983.
[3] H. L Lewis, “Turing Machines”, Elements of Theory of Computation, Second Edition, Prentice Hall, Upper Saddle River, New Jersey,

1998.
[4] J. Teutsch, “A Universal Turing Machine”, Available:

http://people.cs.uchicago.edu/~odonnell/Teacher/Courses/UChicago/CMSC31100/UTM.pdf.
[5] M. L. Minsky: Computation: finite and infinite machines. Prentice-Hall, 1967.
[6] “Turing Machines” Available: http://www.math.ku.dk/~wester/turing.html
[7] A. Zylberberg, S. Dehaene, P. R. Roelfsema and M. Sigman, “The human Turing machine: a neural framework for mental programs”,

Trends in Cognitive Sciences, July 2011, Vol. 15, No. 7.
[8] V. Neumann, J. (1958) The Computer and the Brain, Yale University Press.
[9] D. J Felleman and V. Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47.
[10] A. Pouget, et al. (2003) Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410
[11] D. V. Buonomano and M.M Merzenich (1998) Cortical plasticity: From synapses to maps. Annu. Rev. Neurosci. 21, 149–186
[12] Hopcraft, Motwani and Ullman, “Introduction to Turing Machines”, Introduction to Automata Theory, Languages and Computation,

2nd Edition, 345-361, Addison Wesley, 2001.

Amandeep Kaur / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 430

