
Prediction model for bug re-opens in
Mozilla Firefox

Prabhdeep Kaur*
Department of Computer Engineering,

Baba Banda Singh Bahadur Polytechnic College
Fatehgarh Sahib,Punjab,India

Puneet Mittal2
Department of Computer Science and Engineering,
Baba Banda Singh Bahadur Engineering College

Fatehgarh Sahib,Punjab,India

Amandeep Singh3
Department of Computer Engineering,

Baba Banda Singh Bahadur Polytechnic College
Fatehgarh Sahib,Punjab,India

Abstract: - Bug fixing becomes the most crucial activity in the software development process. Fixing bugs
accounts a large amount of time of software development task. Sometimes these bug fixes are incomplete
or inappropriate and results in bug reopen. Reopened bugs degrades the overall quality of the software
perceived by the users and also increases the maintenance costs and indicates instability in the software
system. Bugs can be re-opened for a variety of reasons. In this paper, we determined that which factors
indicate whether a bug will be re-opened or not using Bugzilla database for Mozilla Firefox. An analysis
is performed on components, different severity levels and the last resolution for the trunk version and
Unspecified version of Mozilla Firefox to study their impact on bug re-opens. A relationship between
significant factors is also established to make the prediction model more accurate. The findings of this
work contribute towards better understanding of what factors impact bug re-openings so they can be
examined more carefully.

Keywords: - Bug re-open, Component, Severity, Last Resolution.
I INTRODUCTION

Every developer wants to develop software which is free from errors or bugs. But as a man-made artifact,
software suffers from various software bugs, which cause crashes, hangs or incorrect results and significantly
threaten the reliability and also the security of computer systems. Software Quality cannot be improved without
knowledge of development process. The number of bugs and errors occurred during the software development
process have to be found in the early stages of development for better quality. Bugs are detected either during
testing before release or in the field by customers post-release. Once a bug is discovered, developers usually
need to fix it. In particular, for bugs that have direct, severe impact on customers, vendors usually make
releasing timely patches the highest priority in order to minimize the amount of system down time [29].

Unfortunately, fixes to bugs are not bullet proof since they are also written by human. Some fixes
either do not fix the problem completely or even introduce new problems. Mistakes in bug fixes may be caused
by many possible reasons. First, bug fixing is usually under very tight time schedule, typically with deadlines in
days or even hours, definitely not weeks. Such time pressure can cause fixers to have much less time to think
cautiously, especially about the potential side-effects and the interaction with the rest of the system. Similarly,
such time pressure prevents testers from conducting thorough regression tests before releasing the fix.

Second, bug fixing usually has a narrow focus (e.g., removing the bug) comparing to general
development. As such, the fixer regards fixing the target bug as the sole objective and accomplishment to be
evaluated by his/her manager. Therefore, he/she would pay much more attention to the bug itself than the
correctness of the rest of the system [29]. Bug reopening is of vital interest to the software developers in order to

• Improve the quality of bug fixing process
• Identify important issues that are not fixed and later result in bug reopens
• Identifying factors that influence the likelihood of a bug being re-opened
• Minimize the occurrence of re-opened bugs.

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 399

II RELATED WORK

The work closest to this study is by Zimmermann et al. [1] who characterized the bug reopen process using a
mixed methods approach: they qualitatively identified causes for bug reopens based on the survey responses of
Microsoft engineers and performed a quantitative analysis using bug reports from the Windows operating
system to assess the impact of the various factors. The findings focusing on factors related to bug report edits
and relationships between people involved in handling the bug. Finally, they build statistical models to describe
the impact of various metrics on reopening bugs ranging from the reputation of the opener to how the bug was
found.
 More related work is done by Shihab et al. [2] who predicted reopened bugs in the Eclipse project.
They used measures from four dimensions—work habits, bug report, bug fix and team—as input for decision
trees (C4.5), which predicted reopened bugs with a precision of 62.9% and a recall of 84.5%. With a top node
analysis they found that the bug report dimension was most influential. In addition to the work by Shihab et al.
[2], this study includes a strong qualitative component on the causes of bug reopens (identified through survey
comments) and also presents complete descriptive analysis. While Shihab et al. [2] used decision trees which are
descriptive too, they only presented the trees aggregated to the top nodes in their paper.
Several other studies modeled the lifetimes of bugs, investigating properties like time-to-resolve (how long it
takes a bug report to be marked as resolved), where the resolution can be of any outcome (e.g., FIXED,
WON’TFIX, DUPLICATE, WORKSFORME). Hooimeijer and Weimer [3] built a descriptive model for the
lifetime of a bug report based on selfreported severity, readability, daily load, reputation, and changes over time.
This model shows that it could reduce software maintenance costs if the average cost of triaging a bug report is
greater than 2% of the cost of ignoring an important issue. Panjer [4] explored the Eclipse bug set with various
data mining algorithms reveal that an accuracy of 34.9% can be achieved using only the primitive attributes
associated with a bug. They used information known at the beginning of a bug's lifetime such as severity,
component, platform, and comments to predict its time-to-resolve. Bettenburg et al. [5] observed that bug
reports are fixed sooner when they contain stack traces or are easy to read.
Anbalagan and Vouk [6] found that the more people are involved a bug, the higher its time-to-resolve. Mockus
et al. [7] found that in Apache and Mozilla, bugs with higher priority are fixed faster than bugs with lower
priority. Herbsleb and Mockus [8] observed that distributed work items (e.g., bug reports) take about 2.5 times
as long to resolve as co-located work items. Cataldo et al. [9] found that when coordination patterns are
congruent with their coordination needs, the resolution time of modification requests (similar to bug reports)
was significantly reduced. In contrast to these time-to resolve studies, this study analyze when bug reports are
reopened.
 Several studies characterized properties of bug reports and their edit activities: Bettenburg et al. [5]
characterized what makes a good bug report. Aranda and Venolia [10] examined communication between
developers about bug reports at Microsoft to identify common bug fixing coordination patterns. Breu et al. [11]
categorized questions asked in open-source bug reports and analyzed response rates and times by category.
Bettenburg et al. [12] quantified the amount of additional information in bug duplicates. Jeong et al. [13]
analyzed the reassignment of bug reports (called bug tossing) and developed tossing graphs to support bug
triaging activities.
 Kim et al. [14] computed the bug-fix time of files in ArgoUML and PostgreSQL by identifying when
bugs are introduced and when they are fixed. They reported two bug-fix time statistics: average bug-fix time,
and files whose bug-fix time were above average and suggested that the files which took above average time to
fix should be refactored. Giger et al. [15] studied six projects: Eclipse JDT, Eclipse Platform, Mozilla Core,
Mozilla Firefox, Gnome GStreamer and Gnome Evolution. They found that using post-submission data of bug
reports (i.e., number of comments made to a bug and number of developers involved) improves bug-fix time
prediction accuracy. Additionally their model could predict how promptly a new bug report will receive
attention. They measured how attributes used by these prediction models correlate with bug-fix time, and found
correlation values to be low. Ko et al. [16] conducted a linguistic analysis of bug report titles and observed a
large degree of regularity. Bertram et al. [17] conducted a qualitative study of issue tracking systems as used by
small, collocated software development teams. They found that even in collocated teams, issue trackers are a
focal point for communication and coordination. Ko and Chilana [18] quantified the value of contributions by
“power users” to open bug reporting in Mozilla. They observed that the primary value comes from recruiting a
small pool of talented developers and reporters, and not from the masses.
Anvik et al. [19] presented an approach to semi- automating the assignment of a bug report to a developer with
the appropriate expertise to resolve the report. Their approach uses a supervised machine learning algorithm that
is applied to information in the bug repository. In addition to presenting their approach and results, they have
presented an in-depth analysis of the application of machine learning to the problem and they have reported on
lessons learned in trying to make use of data in the bug repository. To improve bug triaging, previous research

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 400

proposed techniques to semi-automatically assign developers to bug reports [20, 21], assign locations to bug
reports [22], recognize bug duplicates [23,24,25,26,27], assess the severity of bugs .
 This work adds a characterization of what bug reports are reopened to that body of knowledge. In this
study, it is discovered that which factors can accurately predict the probability of a bug to be reopened and to
find out the relationship between those factors.

III METHODOLOGY

To predict the reopeness of a bug and to identify the factors that influence the likelihood of a bug being re-
opened, Mozilla Firefox [31] was studied because it is large and mature open source software.
 To conduct this study, Bugzilla [30] database for Mozilla Firefox was evaluated. Then we extracted
the reopened bug reports from Bugzilla database for Mozilla Firefox. The Bugzilla database contains all bugs
that have been found in the lifetime of the Mozilla Firefox project with the detailed information that includes the
release number, bug severity, and summary of bugs. Bugzilla stores the bugs in SQL database, so extracting the
bugs from it was a straightforward task. Then the manual examination of the reopened bug report was
performed. The following fields were extracted from the bug reports:

 Bug ID: Unique Identity of the bug.
 Bug Reporter: Who reported this bug?
 Component: The component in which bug is found.
 Assignee: Who is responsible to handle the bug?
 Last Status: The Status when the bug was closed before it reopened.
 Times the bug reopened: The number of times a bug was reopened in its life time.
 Last Resolution: How has the bug been resolved?
 Version: Version in which bug was found.
 Severity: Severity of the reopened bug (High, Medium and Low).
 Platform: The hardware specification in which bug has been found.

 After collecting and analyzing the reopened bug reports, it was found that the bugs of Trunk and
Unspecified versions had maximum reopens. So, these two versions of Mozilla Firefox were considered in this
study.
 When the required fields were extracted from the bug reports, analysis of data was performed to
characterize which factors influence the bug reopen rate. Only those fields were considered in this study which
had impact on bug reopens, other fields were discarded.

Then the data was analyzed to find out their impact on bug re-opens by calculating the reopen rate of
different factors. Only those factors were considered in study which has high reopen rate and more chances to
re-open and those were discarded which has no significant effect on bug re-opens. After that accuracy of
prediction model was evaluated by calculating re-open precision.

IV RESULTS

In this section, the results of analysis performed on collected data to discover which factors influence the reopen
probability of a bug are presented. To do this, statistical analysis of data was performed. After collecting and
analyzing the reopened bug reports, it was found that the bugs of Trunk version and Unspecified version has
higher probability to be reopened.

Table 1: Bug report data statistics

 Trunk Unspecified

Total extracted bug reports 5747 5907

Reopened bug reports 475 395

Not reopened bug reports 5272 5512

 Table 1 shows the number of bug reports used for each version. We had extracted 5747 bug reports for
Trunk Version. Of these 5747 reports only 475 bug reports were reopened and 5272 were not. For each bug
report the required fields were extracted to perform the analysis to describe which factors has impact on bug
reopens.
Table 2 shows the components statistics for the Trunk and Unspecified version. It is observed that some
components have high reopen rate as compared to other i.e. the component in which the bug was found has
much impact on bug reopens. The following components have high reopen rates:

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 401

• Developers Tool
• General
• Session Restore
• Disability Access
• Private Browsing
• Build Config
• Panorama
• PDF Viewer

Table 2: Statistical analysis based upon component

Component Reopen Rate Trunk Reopen Rate Unspecified

Developers Tool 0.174 0.092

General 0.101 0.089

Session Restore 0.092 0.078

Disibility Access 0.091 0.085

Private Browsing 0.078 0.077

Build Config 0.074 0.068

Panorama 0.071 0.068

PDF Viewer 0.068 0.051

Theme 0.060 0.043

Tabbed Browser 0.054 0.063

File Handling 0.053 0.042

Keyboard Navigation 0.052 0.075

Toolbars and Customization 0.048 0.039

Menus 0.047 0.039

Downloads Panel 0.043 0.023

Location Bar 0.041 0.051

Search 0.037 0.065

Security 0.037 0.006

Bookmarks and History 0.033 0.012

RSS Discovery and Preview 0.019 0.024

Preferences 0.019 0.025

Shell Integration 0.010 0.007

When the severity data was analyzed, it was discovered that severity has a significant impact on the bug reopens
as shown in the Table 3. The high severity bugs have more probability of reopening.

Table 3: Statistical analysis based upon severity

Severity Reopen Rate Trunk Reopen Rate Unspecified

High 0.260 0.247

Medium 0.073 0.061

Low 0.091 0.051

Table 4 indicates the probability of a bug being reopened based upon the last resolution of the reopened bug.
The results show that last resolution has influence on bug being reopened. Hence it is an important factor for our

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 402

study. The reopen bug with the last resolution DUPLICATE, FIXED and WORKSFORME has high reopen
rates.

Table 4: Statistical analysis based upon last resolution

Last Resolution Reopen Rate Trunk Reopen Rate Unspecified

DUPLICATE 0.084 0.057

FIXED 0.086 0.078

INCOMPLETE 0.044 0.080

INVALID 0.052 0.047

WONTFIX 0.078 0.054

WORKSFORME 0.089 0.082

In this study, a relationship between factors was also drawn which can accurately predict bug reopen as
indicated in Table 5.

Table 5: Relationship between component and severity for Trunk version

Component High Severity Reopen
Rate

Medium Severity
Reopen Rate

Low Severity
Reopen Rate

Developers Tool 0.667 0.130 0.926

General 0.541 0.076 0.068

Private Browsing 0.500 0.042 0.083

Panorama 0.200 0.078 0.042

Session Restore 0.167 0.084 0.094

Tabbed Browser 0.143 0.059 0.034

Toolbars and Customization 0.143 0.061 0.000

Bookmarks and History 0.063 0.034 0.023

Disability Access 0.000 0.059 0.200

Build Config 0.000 0.070 0.125

PDF Viewer 0.000 0.067 0.091

Theme 0.000 0.052 0.103

File Handling 0.000 0.068 0.037

Keyboard Navigation 0.000 0.065 0.036

Menus 0.000 0.050 0.043

Downloads Panel 0.000 0.048 0.000

Location Bar 0.000 0.045 0.038

Search 0.000 0.039 0.031

Security 0.000 0.033 0.056

Migration 0.000 0.053 0.000

Untriaged 0.000 0.034 0.000

RSS Discovery and Preview 0.000 0.024 0.000

Preferences 0.000 0.017 0.024

Shell Integration 0.000 0.013 0.000

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 403

 Table 5 shows the relationship of the component in which the bug was found with the severity of bug
being reopened. It is clear from the table that High severity bugs in the components Developers Tool, General,
Private Browsing, Panorama, Session Restore, Tabbed Browser, Toolbars and Customization has more
probability to reopen. Similarly in the components Downloads Panel, Location Bar, Search, Migration,
Untriaged, RSS Discovery and Preview and Shell Integration, Medium severity bugs have more reopen rate.
Whereas in Disability access, Build config, PDF viewer, Theme, Security and Preferences, the reopen rate of
Low severity bugs is high.
When this analysis was applied on Unspecified version, the results that appeared are shown in Table 6

Table 6: Relationship between component and severity for Unspecified version

Component High Severity
Reopen Rate

Medium Severity
Reopen Rate

Low Severity
Reopen Rate

Disability Access 1.000 0.053 0.125

Private Browsing 1.000 0.040 0.077

Developers Tool 0.750 0.077 0.373

Location Bar 0.500 0.057 0.021

General 0.495 0.065 0.031

Menus 0.200 0.029 0.034

Keyboard Navigation 0.143 0.090 0.043

Toolbars and Customization 0.125 0.042 0.020

Session Restore 0.063 0.078 0.091

Build Config 0.000 0.083 0.000

Panorama 0.000 0.073 0.050

Search 0.000 0.074 0.040

Tabbed Browser 0.000 0.071 0.045

Social API 0.000 0.059 0.000

PDF Viewer 0.000 0.040 0.125

Theme 0.000 0.038 0.077

File Handling 0.000 0.063 0.023

Page Info Window 0.000 0.059 0.000

Preferences 0.000 0.035 0.011

RSS Discovery and Preview 0.000 0.029 0.000

Download Panel 0.000 0.028 0.000

Sync 0.000 0.020 0.000

Extension Compatibility 0.000 0.018 0.000

Bookmarks and History 0.000 0.014 0.011

Shell Integration 0.000 0.012 0.000

Security 0.000 0.012 0.000

 After analyzing the data it was discovered that in the components Disability Access, Private browsing,
Developers Tools, Location Bar, General, Menus, Keyboard Navigation and Toolbars and Customization, the
bugs with High severity had more chances to be reopened. Whereas Medium severity bugs had high reopen rate
in Build config, File handling, Social API, Tabbed browser, Preferences, Download panel, Sync, security and
Page info window. Whereas in Theme, Session restore and PDF viewer, Low severity bugs had high reopen
rate.

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 404

A relationship is also discovered between component in which a bug was and the last resolution of the bug when
it was closed as shown in table 7. Following components had high reopen rate in the last resolution field shown
against them:
DUPLICATE- Private Browsing, Download Panel, Developers Tool, File Handling, Build Config, Search.
FIXED – General, RSS Discovery and Preview, Disability Access, Migration, Session Restore.
INCOMPLETE – Developers Tool, Tabbed Browser, Bookmarks and History.
INVALID – PDF Viewer, Panorama, Menus, Location Bar, Toolbar and Customization.
WONTFIX – Tabbed Browser, Bookmarks and History, PDF Viewer, Keyboard Navigation, Theme,

Preferences.
WORKSFORME – Disability Access, Developers Tool, Build Config, Session Restore, Security, Location Bar,

Untraiged.
Table 7: Relationship between component and last resolution for Trunk version

Component
DUPLICAT

E Reopen
Rate

FIXED
Reopen Rate

INCOMPLE
TE Reopen

Rate

INVALID
Reopen

Rate

WONTFIX
Reopen Rate

WORKSFO
RME

Reopen
Rate

Private Browsing 0.250 0.081 0.000 0.000 0.000 0.000
Developers Tool 0.222 0.147 0.250 0.097 0.178 0.274
File Handling 0.111 0.038 0.000 0.000 0.000 0.071
General 0.104 0.143 0.027 0.038 0.059 0.063
Build Config 0.100 0.071 0.000 0.000 0.000 0.143
Downloads Panel 0.091 0.023 0.000 0.000 0.250 0.000
Session Restore 0.080 0.106 0.000 0.000 0.000 0.114
Search 0.074 0.027 0.000 0.000 0.067 0.000
PDF Viewer 0.067 0.041 0.000 0.333 0.333 0.059
Panorama 0.061 0.048 0.000 0.167 0.250 0.050
Location Bar 0.060 0.028 0.000 0.100 0.000 0.083
Theme 0.051 0.059 0.000 0.048 0.120 0.048
Shell Integration 0.042 0.000 0.000 0.000 0.000 0.000
Keyboard Navigation 0.040 0.034 0.000 0.000 0.200 0.083
Security 0.037 0.038 0.000 0.000 0.000 0.111
Toolbars and
Customization 0.032 0.053 0.000 0.091 0.000 0.067

Tabbed Browser 0.030 0.043 0.286 0.077 0.091 0.075
Untriaged 0.030 0.000 0.000 0.000 0.000 0.063
Menus 0.022 0.040 0.000 0.154 0.059 0.063
Bookmarks and
History 0.021 0.035 0.083 0.050 0.045 0.024

Preferences 0.015 0.015 0.000 0.000 0.056 0.033
Disability Access 0.000 0.100 0.000 0.000 0.000 0.333
Migration 0.000 0.067 0.000 0.000 0.000 0.000
RSS Discovery and
Preview 0.000 0.125 0.000 0.000 0.000 0.000

 Table 8 depicts the relationship between component and last resolution field for the unspecified
version. The results are given below which represents the relation between them:
DUPLICATE – Private Browsing, Download Panel, Developers Tool, Disability Access.

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 405

FIXED – File Handling, Tabbed Browser, Build Config, Session Restore, Menus.
INCOMPLETE – General, Location bar.
INVALID – Panorama, General.
WONTFIX – Keyboard Navigation, Social API, Toolbars and Customization, Preferences, Bookmarks and

History.
 WORKSFORME – Page Info Window, Theme, Disability Access, RSS Discovery and Preview, Developers

tool, PDF viewer, Extension Compatibility, Location bar.
 The results showed that which component had high probability to reopen based upon the last
resolution field value.

Table 8: Relationship between component and last resolution for Unspecified version

Component
DUPLICAT

E Reopen
Rate

fixed Rate incomplete
Rate Invalid Rate wontfix

Rate
worksforme

Rate

Download Panel 0.167 0.000 0.000 0.000 0.000 0.000

Developer Tools 0.148 0.083 0.000 0.027 0.011 0.137

Private browsing 0.125 0.105 0.000 0.000 0.000 0.000

Disability Access 0.105 0.091 0.000 0.000 0.000 0.167

Social API 0.100 0.038 0.000 0.000 0.200 0.000

Session restore 0.067 0.132 0.000 0.056 0.091 0.080

Panorama 0.056 0.057 0.000 0.111 0.077 0.111

GENERAL 0.055 0.091 0.147 0.089 0.179 0.085

Search 0.050 0.118 0.000 0.071 0.000 0.077

Keyboard Navigation 0.049 0.125 0.083 0.063 0.250 0.105

Tabbed Browser 0.043 0.267 0.045 0.069 0.000 0.067

Extension Compatibility 0.038 0.000 0.000 0.000 0.000 0.045

Location Bar 0.037 0.083 0.077 0.053 0.000 0.087

Toolbars and
Customization 0.027 0.030 0.000 0.042 0.182 0.048

Theme 0.026 0.033 0.000 0.063 0.000 0.176

File Handling 0.026 1.000 0.000 0.000 0.000 0.077

Preferences 0.020 0.059 0.000 0.000 0.100 0.000

Menus 0.018 0.111 0.000 0.071 0.000 0.091

Bookmarks and History 0.017 0.000 0.000 0.000 0.067 0.000

Security 0.014 0.000 0.000 0.000 0.000 0.000

Shell Integration 0.014 0.000 0.000 0.000 0.000 0.000

Build Config 0.000 0.231 0.000 0.000 0.000 0.000

PDF Viewer 0.000 0.054 0.000 0.000 0.000 0.100

Sync 0.000 0.031 0.000 0.000 0.000 0.000

Page Info Window 0.000 0.000 0.000 0.000 0.000 0.333

RSS Discovery and
Preview 0.000 0.000 0.000 0.000 0.000 0.143

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 406

Evaluating the Accuracy of Model
To check the accuracy of model, re-open precision is evaluated of components, component and severity,
component and last resolution. To calculate re-open precision [2], TP (True Positive) and FP (False Positive)
values are obtained. A parameter is said to be TP if its reopen rate is equal to or more than 0.05 in both the
versions Trunk and Unspecified. And a parameter is said to be FP if its reopen rate is greater than or equal to
0.05 in one version and less than 0.05 in other version. Then the Re-open Precision can be calculated as given
below:

P(re-open)=	 ்௉்௉ାி௉.

A precision value of 100 % would indicate that every bug we classified as re-opened was actually re-opened.

To estimate the accuracy of this model, firstly we calculated the re-open precision of Trunk version
over unspecified version based upon components, component and severity, component and last resolution. And
then re-open precision of unspecified over Trunk version as shown in the table 9.

Table 9: Re-open precision

Parameter

Re-open Precision
P(re-open)
Trunk over
Unspecified

Re-open Precision
P(re-open)

Unspecified over
Trunk

Based upon component .83 .77
Based upon component and severity High severity .57 .50

Medium severity .64 .69
Low severity .67 .86

Based upon component and last
resolution

DUPLICATE .58 .78
FIXED .60 .40
INCOMPLETE 0 0
INVALID .50 .44
WONTFIX .36 .50
WORKSFORME .70 .60

It is observed that the reopen precision for the components is calculated to be 83% and 77%, which is a
high percentage of accuracy. It indicates that the prediction model which is described has accurately predicted
the reopen bugs. Also the re-open precision for different severity levels is quite high. In case of last resolution,
the re-open precision for DUPLICATE, FIXED and WORKSFORME is accurately predicted whereas for
iNCOMPLETE, INVALID and WONTFIX the re-open precision is low.

IV CONCLUSIONS AND DISCUSSIONS
In this study, it is determined that which factors indicate whether a bug will be re-opened or not.

Knowing which factors are attributed to re-opened bugs prepares practitioners to think twice before closing a
bug. In this study, Bugzilla database for Mozilla Firefox is evaluated. Then extraction of reopened bug reports
from Bugzilla database for Mozilla Firefox is done. Then the manual examination of the reopened bug report is
performed. When the required fields are extracted from the bug reports, analysis of data is performed to
characterize which factors influence the bug reopen rate.
 When the re-open rates for the components, different severity levels and the last resolution is calculated
for the trunk version. Then the analysis indicates that the components Developers Tool, General, Session
Restore, Disability Access, Private Browsing, Build Config, Panorama, PDF Viewer has high re-open rate. Also
the bugs with High severity have more chances of reopen as compared to Medium and Low severity. Similarly
the re-open rate of bugs with the last resolution as DUPLICATE, FIXED and WORKSFORME is high.
 And when analysis is performed on the unspecified version, then significant results are obtained as for
the trunk version. Shihab et al. [2] who predicted reopened bugs in the Eclipse project. They used measures
from four dimensions—work habits, bug report, bug fix and team—as input for decision trees (C4.5), which
predicted reopened bugs with a precision of 62.9% and a recall of 84.5%. Whereas Zimmermann et al. [1]
characterized the bug reopen process using a mixed methods approach: they qualitatively identified causes for
bug reopens based on the survey responses of Microsoft engineers and performed a quantitative analysis using
bug reports from the Windows operating system to assess the impact of the various factors.

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 407

But in this study, a relationship between factors is also drawn which can accurately predict bug reopen
probability. It can be predicted that a component with specific severity level and last resolution has more
probability to be re-opened for both versions. The re-open precision for the components is calculated to be 83%
and 77% for the Trunk and Unspecified version respectively, which is a significant percentage of accuracy. It
indicates that the prediction model which is described has accurately predicted the reopen bugs. Also the re-
open precision for different severity levels is quite high. In case of last resolution, the re-open precision for
DUPLICATE, FIXED and WORKSFORME is accurate predicted whereas for INCOMPLETE, INVALID and
WONTFIX the re-open precision is low. The findings of this work contribute towards better understanding of
what factors impact bug re-openings so they can be examined more carefully. Doing so will reduce the number
of re-opened bugs and the maintenance costs associated with them.

REFERENCES
[1] Zimmermann T, Nagappan N, Guo PJ, Murphy B (2012) “Characterizing and predicting which bugs get reopened”. In: ICSE ’12:

proceedings of the 34th international conference on software engineering, pp 495–504.
[2] Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams, B., Hassan, A.E., and Matsumoto, K. i. ”Predicting Re-opened

Bugs: A Case Study on the Eclipse Project”. In Proceedings of the 17th Working Conference on Reverse Engineering (2010), 249-
258.

[3] Hooimeijer, P. and Weimer, W. “Modeling bug report quality”. In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (2007), 34-43.

[4] Panjer, L.D. “Predicting Eclipse Bug Lifetimes”. In MSR '07: Proceedings of the Fourth International Workshop on Mining Software
Repositories (2007).

[5] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T."What Makes a Good Bug Report?” In FSE '08:
Proceedings of the 16th International Symposium on Foundations of Software Engineering (November 2008).

[6] Anbalagan, P. and Vouk, M. “On Predicting the Time taken to Correct Bugs in Open Source Projects” (short paper). In ICSM '09:
Proceedings of the International Conference on Software Maintenance (September 2009).

[7] Mockus, A., Fielding, R.T., and Herbsleb, J.D.”Two case studies of open source software development: Apache and Mozilla”. ACM
Trans. Softw. Eng. Methodol., 11 (2002), 309-346.

[8] Herbsleb, J.D. and Mockus, A.” An Empirical Study of Speed and Communication in Globally Distributed Software Development”
IEEE Trans. Software Eng., 29 (2003), 481-494.

[9] Cataldo, M., Herbsleb, J.D., and Carley, K.M. “Socio-technical congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity”. In ESEM '08: Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement (2008), ACM, 2--11.

[10] Aranda, J. and Venolia, G. “The Secret Life of Bugs: Going Past the Errors and Omissions in Software Repositories”. In ICSE' 09:
Proceedings of the 31st International Conference on Software Engineering (2009).

[11] Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. “Investigating Information Needs to Improve Coo"peration Between Developers
and Bug Reporters”. In CSCW '10: Proceedings of the ACM Conference on Computer Supported Cooperative Work (February 2010).

[12] Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S. “Duplicate Bug Reports Considered Harmful. Really ?” In ICSM '08:
Proceedings of the 24th IEEE International Conference on Software Maintenance (September 2008), 337--345.

[13] Jeong, G., Kim, S., and Zimmermann, T. “Improving Bug Triage with Bug Tossing Graphs”. In ESEC-FSE '09: Proceedings of the
European Software Engineering Conference and ACM SIGSOFT Symposium on Foundations of Software Engineering (2009).

[14] S. Kim and E. J. Whitehead, Jr. “How long did it take to fix bugs?”. In MSR, 2006.
[15] E. Giger, M. Pinzger, and H. Gall. “Predicting the fix time of bugs”. In RSSE, 2010.
[16] Ko, A.J., Myers, B.A., and Chau, D.H.”A Linguistic Analysis of How People Describe Software Problems”. In VL/HCC '06:

Proceedings of the 2006 IEEE Symposium on Visual Languages and Human Centric Computing (2006), 127-134.
[17] Bertram, D., Voida, A., Greenberg, S., and Walker, R. “Communication, collaboration, and bugs: the social nature of issue tracking in

small, collocated teams”. In CSCW '10: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work (2010),
291-300.

[18] Ko, A.J. and Chilana, P.K. “How power users help and hinder open bug reporting”. In CHI '10: Proceedings of the 28th International
Conference on Human Factors in Computing Systems (2010), 1665-1674.

[19] Anvik, J., Hiew, L., and Murphy, G.C. “Who should fix this bug?” In ICSE '06: Proceedings of the 28th International Conference on
Software Engineering (2006), 361--370.

[20] Anvik, J. and Murphy, G. ”Reducing the Effort of Bug Report Triage: Recommenders for Development-oriented Decisions”. ACM
Transactions on Software Engineering and Methodology (TOSEM).

[21] Canfora, G. and Cerulo, L. “Supporting change request assignment in open source development”t. In SAC '06: Proceedings of the
2006 ACM Symposium on Applied Computing (2006), 1767--1772.

[22] Canfora, G. and Cerulo, L. “Fine grained indexing of software repositories to support impact analysis”. In MSR '06: Proceedings of
the International Workshop on Mining Software Repositories (2006), 105-111.

[23] Hiew, L. “Detection of duplicate bug reports” , 2006. The University of British Columbia.
[24] Runeson, P., Alexandersson, M., and Nyholm, O. “Detection of Duplicate Defect Reports Using Natural Language Processing”. In

ICSE '07: Proceedings of the 29th International Conference on Software Engineering (2007), 499--510.
[25] Jalbert, N. and Weimer, W. “Automated duplicate detection for bug tracking systems”. In DSN '08: Proceedings of the Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (2008), 52-61.
[26] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. “An Approach to Detecting Duplicate Bug Reports using Natural Language and

Execution Information”. In ICSE '08: Proceedings of the 30th International Conference on Software Engineering (May 2008).
[27] Menzies, T. and Marcus, A. “Automated severity assessment of software defect reports”. In ICSM '08: Proceedings of the 24th IEEE

International Conference on Software Maintenance (September 2008), 346-355.
[28] Bugzilla Documentation – Life Cycle of a Bug. Available online at http://www.bugzilla.org/docs/tip/html/lifecycle.html.
[29] J. Śliwerski, T. Zimmermann, and A. Zeller, "When do changes induce fixes?" in MSR '05: Proceedings of the 2005 international

workshop on Mining software repositories, 2005, pp. 1-5.
[30] “Bugzilla for Mozilla”, 2013. http://bugzilla.mozilla.org.
[31] http//Mozilla.org/en-US/firefox.
[32] Mittal, P., Singh, S., and Kahlon, K.S., 2011. “Identification of Error Prone Classes for Fault Prediction Using Object Oriented

Metrics”, ACC 2011, Part II, Communications in Computer and Information Science, Vol. 191, pp. 58-68.

Prabhdeep Kaur et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 07 Jul 2015 408

	Prediction model for bug re-opens inMozilla Firefox
	Abstract
	Keywords
	I INTRODUCTION
	II RELATED WORK
	III METHODOLOGY
	IV RESULTS
	IV CONCLUSIONS AND DISCUSSIONS
	REFERENCES

