
Comparative analysis of software metrics
on the basis of complexity

Shweta
Department of Computer Science and Engineering

Chandigarh University
Gharuan(Mohali(Punjab)),India

sainishweta98@gmail.com

Abstract- Software metrics have been proposed to measure various attributes of the software like –
complexity, cohesion,software quality and productivity. Among these “complexity” is considered to be
most important attribute. It can be either based on the code of the software or its dependency on other
projects. The aim of this paper is to perform comparative analysis of some of the complexity metrics. The
paper provides a brief introduction to McCabe complexity metrics,Halstead’s complexity metrics,object
oriented metrics and Henry-Kafura Information flow metrics along with a comparison between them.

Keywords-complexity; measurements; coupling; cohesion.
I. INTRODUCTION

Software metrics are in use from decades to measure different properties of the software. The goal of using
software metrics is to obtain objective and quantifiable measurements which can be beneficially used in budget
and schedule planning,quality assurance activities[1],cost estimation and performance optimization.Complexity
is an important aspect of a software which is used in predicting essential properties of the software like-
reliability, extensibility, understandability, maintainability, portability etc. it measures the number of
components of a software project and their interdependencies. Measuring software complexity helps in
achieving more predictability in managing software.
Higher level of complexity in software increases the risk of interfering with interactions and so increases the
chance of introducing defects while making changes managing software complexity thus helps in lowering the
risk of defect-occurrence and in lowering the maintenance costs[14]. Static metrics are derived from
measurements of static analysis of code.Object oriented metrics are derived from dynamic analysis of software
code[2].Object oriented analysis and design of software provides an efficient way to evaluate and predict quality
of the software by decomposing it into easily understandable objects. Object oriented metrics are used to
measure and quantify the effectiveness of object oriented analysis techniques in the design of a software.

II. LITERATURE REVIEW

Many measures of software complexity have been proposed.
Thomas J.McCabe in 1976 developed cyclomatic complexity software metric to indicate complexity of a
software program. It directly measures the number of independent paths in a program’s source code. McCabe
proposed a testing strategy called Basis path testing to test each linearly independent path through the software
program.
In 1977 Mauric Howard Halstead introduced Halstead complexity metrics as a part of his treatise on
establishing an empirical science of software development. Halstead observed that the software metrics should
reflect implementation of algorithms in different languages. While being independent of their execution on a
specific platform. Halstead’s aim was to identify measureable properties of software and relations between
them. Halstead’s metrics are computed statically from the code.
S.Henry and D.Kafura in 1981 introduced software structure metrics based on information flow which measures
software complexity as a function of fan-in and fan-out where fan-in of a procedure is the number of local flows
into that procedure plus the number of data structures from which the procedure retrieves information. Fan-out
is the number of local flows of the procedure plus the number of data structures it updates.
Two suits of metrics, Chidamber-Kemerer[8] and MOOD[15] are used when the code is analysed for object
oriented properties. Shyam Chidamber and Chris Kemerer in 1994 introduced six metrics WMC,DIT,
NOC,CBO,RFC and LCOM1. The original suit has later been amended by RFC’,LCOM2,LCOM3 and LCOM4
by other authors. The MOOD metrics defined by Fernado Britoe Abreu, are designed to provide a summary of
overall quality of an object oriented project. The original MOOD metrics consist of six metrics, the MOOD2
metrics were added later.

Shweta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 12 Dec 2014 1099

III. SOFTWARE COMPLEXITY METRICS

A. Cyclomatic Complexity Metric:
Cyclomatic complexity metric proposed by McCabe is the quantitative measure of logical strength of program.It
measures the number of independent paths through a software module.
Mathematically, Cyclomatic Complexity of a software program is defined with reference to control flow graph
of the software program which is a direct graph containing basic blocks of the program with directed edges
between the basic blocks. Cyclomatic complexity (M) is defined as:
M=E-N+2P
Where,
E= number of edges in the graph
N= number of nodes in the graph
P= number of components in the graph
Other metrics used by Mc Cabe for calculating complexity of a software product are:

1. Actual Complexity Metric: It is the measure of number of independent paths traversed during testing
2. Module Design Complexity Metric: It is the complexity of design reduced module and reflects

complexity of module’s complexity patterns to its immediate subordinate.
3. Essential complexity Metrics: It is a measure of degree to which a module contains unstructured

constructs.
4. Pathological complexity Metrics: It is the measure of degree to which a module contains extremely

unstructured constructs.
5. Design complexity Metrics: It measures amount of interaction between modules in a system.
6. Integration Complexity Metric: It is the amount of integration testing needed to guard against errors.

Significance of Cyclomatic Complexity Metric:

1. It can be used as a ease of maintenance metric.
2. It is also used as a quality metric, it gives relative complexity of various designs.
3. It can be completed early in lifecycle than the Halstead’s metrics.
4. It measures minimum effort and best area of concentration of testing.
5. It guides testing process by limiting program logic during development.
6. It is easy to apply.
7. Well-suited for measuring the number of test cases needed to test the model,

Drawbacks of Cyclomatic Complexity Metric:

1. Cyclomatic Complexity is the measure of program’s control complexity and not the data complexity.
2. Same weight is placed on nested and non-nested loops. However, deeply nested conditional structures

are difficult to understand than non-nested.
3. It may give a misleading figure with regards to a lot of simple comparisons and decision structure.

Whereas fan-in and fan-out metric is more applicable as it can track data flow.
B. Halstead Complexity Metrics:
Halstead complexity Metrics are software metrics introduced by Maurice Halstead in 1977.
Halstead’s goal was to identify measurable properties of software and relations between them.Halstead observed
the following[8]:

1. Code complexity increases as volume increases.
2. Code complexity increases as program level decreases.

Unlike Mc Cabe complexity metrics, the Halstead metrics do not distinguish between conditional statements and
straight line statements. All metrics are determined by mathematical relationships of 4 measures: distinct
operators(n1),distinct operands(n2),total operators(N1),total operands(N1).

Shweta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 12 Dec 2014 1100

Table No.-1

Name of measure Notation Formulae Description

Program-Vocabulary N N=n1+n2 It measures the breadth of
operators and operands
appearing in program.

Program-Length N N=N1+N2 Measures total usage of all
operators and operands
appearing in program.

Program- Volume V V=N*log₂(n) Measures the size of
information used to specify the
program.

Program-Difficulty D D=(n1/2)*(N2/n2) Measures ease of reading the
program.

Programming-Effort E E=(n1*N2*Nlog₂n)/(2*n2) Measures the mental activity
required to reduce a pre-
considered algorithm to a
program.

Programming-Time T T=E/S S is the Stroud number
4,defined as number of
elementary discriminations
performed by human brain per
second.

Intelligent-Content I I=(2*n2/n1*N2)*V Measure the information content
of the program.

Significance of Halstead Complexity metrics:

1. Don’t require in-depth analysis of programming structure.
2. It predicts rate of error.
3. It predicts maintenance effort.
4. It is useful in scheduling and reporting projects.
5. It can be used for any programming language.
6. Halstead complexity metrics is slightly stronger than McCabe’s metrics in time estimation ofsoftware

development.
Drawbacks of Halstead Complexity metrics:

1. It depends on complete code.
2. It has little significance in estimation.
3. McCabe model is more suited at design level than it.

C. Fan-in Fan-out complexity metric:
Henry and Kafura identified a form of fan-in fan-out complexity metric which maintains a count of number of
data flows from a component plus number of global data structures that the program updates. Data flow count
includes updated procedure parameters and procedures called from within a module.
Complexity =Length * (Fan-in * Fan-out)²
Where,
Fan-in= local flows into a procedure + number of data structures from which procedures retrieve data
Fan-out=local flows from a procedure + number of data structures that procedure updates
Length=number of source statements in a procedure
Significance of Fan-in Fan-out Complexity Metrics:

1. It takes into account data-driven programs.
2. It can be driven prior to coding, during design stage.

Drawback of Fan-in Fan-out Complexity Metrics:

 It can give complexity value of zero if a procedure has no external interactions.

Shweta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 12 Dec 2014 1101

D. Object Oriented Metrics:
Traditional metrics such as Cyclomatic Complexity failed to measure Object Oriented concepts such as: classes,
encapsulation, inheritance and message passing. In object oriented program inheritance promotes reusability,
coupling can be kept minimum to keep complexity of the software controlled[10].
To characterize the “object-orientedness” of a software design,some traditional metrics used are: SLOC,
Cyclomatic Complexity,Comment Percentage, number of procedures and defects[18] and a suite of object
oriented metrics proposed by Shyam Chidamber and Chris Kemerer[8] and MOOD (Metrics for Object Oriented
Design)suit[6] are mainly used. Some of the object oriented metrics are described in the table that follows.

Table No.-2

Name of metric Measure Calculation Use
Weighted Method per
Class (WMC)

Measures some aspect of
scope of methods
making up class.

Summation of weighted
methods of class.

Higher WMC values
correlate with increased
development,testing and
maintenance efforts[16].

Depth of inheritance
Tree (DIT)

Inheritance upon which a
class was built[12].

Maximum of number of
levels in each of class’s
inheritance path.

DIT count correspond
with greater error density
and lower quality.

Number of
children(NOC)

How widely a class is
reused to build other
classes.

Count of classes that are
directly derived from a
specified class.

Larger NOC counts point
to greater reuse of class.
High NOCs may also flag
a misuse of sub classing.

Response for a class
(RFC)

Overall complexity of
calling hierarchy of
methods making up a
class.

Counts of methods of a
class and methods that
they directly call.

Larger RFC count
correlates with increased
testing requirements.

Coupling between
Object Classes(CBO)

How dependent a class is
on other.

Count of external classes
whose members are
called, set, read or used as
type by members of
current class[16].

Excessive coupling limits
availability of class for
reuse and also leads to
greater testing and
maintenance efforts[17].

Lack of Cohesion in
Method(LCOM)

How widely member
variables are used for
sharing member
functions.

Counts of pairs of class
members that do not
access any of same class
variables reduced by
number of pairs that
do[11].

A higher LMOC denotes
low cohesion. This
correlates with weaker
encapsulation.Hierachical
clustering can improve
cohesion of classes [5].

Attributed Hiding
Factor(AHF)

Measures invisibility of
attributes in classes.

Percentage of total
classes from which
attribute isn’t visible.
AHF=sum of
invisibilities of all
attributes of all
classes/total number of
attributes in the project.

Higher value of AHF is
desired for better
encapsulation. High AHF
correlates to high
maintenance and
independent code change
ability

Method Hiding
Factor(MHF)

Measures invisibility of
methods in class.

MHF=sum of
invisibilities of all
methods defined in all
classes/total number of
methods defined in the
project.

High MHF value depicts
high encapsulation. It
correlates to high
maintenance of the
software.

Shweta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 12 Dec 2014 1102

Significance of Object Oriented Metrics:

Used as an early indicator of some externally visible attributes such as reliability, maintainability and fault-
proneness.

1. They appeared from the nature of the OO approach.
2. NOC and RFC metrics give some idea as to budgeting for testing that class.
3. Coupling metrics are good predictor of fault proneness.[3]
4. Careful use of inheritance can lead to better design.[3]

Drawbacks of Object Oriented Metrics:

1. Internal metrics are of a little value unless there is evidence that they are related to external values.
2. Measuring complexity of a class is subject to bias.
3. They cannot give a good size and effort estimation of software .
4. These metrics seem only to bring the design phase into play, and does not provide adequate coverage in

terms of planning.
5. The OO metrics have no conversion rules to lines of code metrics[13].
6. The OO metrics have no conversion rules to function point metrics[13].
7. The OO metrics lack automation[13].
8. The OO metrics are difficult to enumerate[13].
9. CK metrics suit is not able to distinguish between a class with high cohesion and a class with medium

cohesion[9].
Table No.-3 (Table of comparison between complexity metrics)

 Cyclomatic
Complexity Metric

Halstead
Complexity Metric

Fan-in Fan-out
Metric

Object Oriented
Metric

Complexity
defined in relation
to

Decision structure
of organisation

Magnitude of
computation

Information flow
structure of
program

Modular structure
of program

Key Feature Estimating code
complexity,
identifying most
complex module.

Calculating
program effort in
man month

Locating modules
that contribute the
highest
maintenance effort

Evaluate key
features of Object
Oriented design like
encapsulation,
polymorphism etc

Computation time
in lifecycle

Can be computed
early in lifecycle.

Depends on
completed code.

Can be computed
early in lifecycle.

Can be computed
early in lifecycle.

CONCLUSION

A comparative analysis of different complexity metrics is done to depict their significance and drawbacks in
different contexts. It has been concluded that Mc Cabe Cyclomatic Complexity can be completed early in
lifecycle than Halstead’s metric as such more beneficial for predicting software quality. Fan-in Fan-out metric is
more applicable for simple comparison and decision structures than Mc Cabe Cyclomatic Complexity Metrics
due to its data tracking capability. Time prediction by Halstead’s metrics is slightly more stronger than that by
Mc Cabe Complexity Metric. For measuring object oriented features like localisation, encapsulation,
inheritance, polymorphism, specialisation of classes etc, the Object Oriented metrics are used. Various external
software attributes like reusability and maintenance etc can be predicted by using object oriented metrics.

REFERENCES
[1] Mathur, Kirti, and Amber Jain."A Comparative Survey of Software Quality Metrics."International Journal of Research(2013).
[2] Chawla, Sonal, and Gagandeep Kaur."Comparative Study of the Software Metrics for the complexity and Maintainability of Software

Development."International Journal of Advanced Computer Science & Applications 4.9 (2013).
[3] Aggarwal, K. K., et al. "Empirical analysis for investigating the effect of object‐oriented metrics on fault proneness: a replicated case

study." Software Process: Improvement and Practice 14.1 (2009): 39-62.
[4] Kaur, Kiranjit, and Sami Anand."A Maintainability Estimation Model and Metrics for Object-Oriented Design (MOOD)."International

Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 2.5 (2013): pp-1841.
[5] Sadaoui, Lazhar, MouradBadri, and Linda Badri."Improving Class Cohesion Measurement: Towards a Novel Approach Using

Hierarchical Clustering."Journal of Software Engineering & Applications 5.7 (2012).
[6] Sharma, Aman Kumar, ArvindKalia, and Hardeep Singh. "Metrics Identification for Measuring Object Oriented Software Quality."
[7] Malathi, S., and S. Sridhar."ANALYSIS OF SIZE METRICS AND EFFORT PERFORMANCE CRITERION IN SOFTWARE COST

ESTIMATION."Indian Journal of Computer Science and Engineering 3.1 (2012): 24-31.
[8] Chidamber, Shyam R., David P. Darcy, and Chris F. Kemerer. "Managerial use of metrics for object-oriented software: An exploratory

analysis." Software Engineering, IEEE Transactions on 24.8 (1998): 629-639.

Shweta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 12 Dec 2014 1103

[9] Salem, Ahmed M., and Abrar A. Qureshi. "Analysis of Inconsistencies in Object Oriented Metrics." Journal of Software Engineering
& Applications 4.2 (2011).

[10] Chawla, Sonia, and RajenderNath."Evaluating Inheritance and Coupling Metrics."
[11] Aggarwal, K. K., et al. "Empirical Study of Object-Oriented Metrics." Journal of Object Technology 5.8 (2006): 149-173.
[12] Rajnish, Kumar, Arbind Kumar Choudhary, and Anand Mohan Agrawal."INHERITANCE METRICS FOR OBJECT-ORIENTED

DESIGN."International Journal of Computer Science & Information Technology 2.6 (2010).
[13] Rawat, Mrinal Singh, Arpita Mittal, and Sanjay Kumar Dubey. "Survey on Impact of Software Metrics on Software

Quality."International Journal of Advanced Computer Science & Applications 3.1 (2012).
[14] Debbarma, MrinalKanti, et al. "A Review and Analysis of Software Complexity Metrics in Structural Testing." International Journal

of Computer and Communication Engineering 2 (2013): 129-133.
[15] MansiAggarwal,Vinit Kumar Verma,HarshVardhan Mishra “An Analytical Study of Object Oriented Metrics ” International Journal

of Engineering Trends and Technology (IJETT) 6.2 (2013)
[16] Prabhjot Kaur “Study of Various Class Oriented Metrics”International Journal of Computers and Distributed Systems.2.1(2012)
[17] Gulia, Preeti, and Rajender Singh Chillar. "Design based Object-Oriented Metrics to Measure Coupling and Cohesion." International

Journal of Engineering Science & Technology 3.12 (2011).
[18] VasudhaDixit,RajeevVishwkarma “Static and Dynamic Coupling and Cohesion Measures in Object Oriented Programming”

International Journal of Engineering Research (IJER) 2.7 (2013):472-477

Shweta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 12 Dec 2014 1104

	Comparative analysis of software metricson the basis of complexity
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. SOFTWARE COMPLEXITY METRICS
	CONCLUSION
	REFERENCES

