
Survey Report on Software Cost Estimation
using Use Case Point Method

Preetam Pratap Jena

School of Computer Engineering
KIIT University

Bhubaneswar, Odisha, India
preetampratap@hotmail.com

Samaresh Mishra

School of Computer Engineering
KIIT University

Bhubaneswar, Odisha, India
samaresh2@gmail.com

Abstract - Software estimation is an important activity in software project management. Many software
projects fail because of the inaccurate and untimely estimation of cost. Estimation in the early stages of the
software life cycle became important though it helps to prevent or reduce project failures. Early estimation
became so important while bidding on a project or signing the contract between the client and the developer.
The early software estimation is carried out at a point when the details of the problem are not revealed
completely. Now a days most of the software industries are focusing on Object-Oriented Software
Development. Though the Use Case diagram is prepared after preparing a clear requirement specification,
when all the artifacts about the system was clear enough, the UML Use Case Point method can be useful for
early estimation. Many researchers and practitioners have done remarkable researches on Use Case Point
Method and revealed several artifacts of use case in order to extend the well-known UCP method to support
various range of software estimation. In our study, we have surveyed several papers on use case point method
and highlighted the proposed metrics or factor by the researchers through this report.
Keywords : Early Software Estimation, Use Case Point, Cost Estimation.

I. INTRODUCTION
 Software project estimation is crucial in software development. Effective software project estimation is one
of the most important and challenging activities in software development. A proper project planning and control
can't be possible without a proper and accurate estimation. Inaccurate estimation causes improper staff management,
ineffective cash flow, poor schedule management which indirectly affect the quality of the product. If we give a
project more resources than it really needs, then the project is likely to cost more, take longer time to deliver than
necessary, and delay the use of resources on the next project.
 Now a days most of the software industries are focusing on Object-Oriented Software Development.
Though the Use Case diagram is prepared in the early stages of design, after preparing a clear requirement
specification, when all the artifacts about the system was clear enough, so this can considered to be useful for early
estimation. A use case diagram is the simplest representation of a user's interaction with the system. A use case
diagram can portray the different types of users of a system and the different ways that they interact with the system.
Use case diagrams are used at a very high level of design. Then this high level design is refined again and again to
get a complete and practical picture of the system. A well structured use case also describes the pre condition, post
condition, exceptions, direct and alternate scenarios etc. And these extra elements are used predict the size, effort
and cost required for the software yet to be developed. In our research, we have surveyed several remarkable works
by several researchers and highlighted their proposed metrics and the use case diagram artifacts considered by them.

II. LITERATURE REVIEW
Gustav Karner in 1993 [1], proposed a model which can predict the total amount of resources required for
developing a software system with object-oriented principle, in the early phases of software development. In his
research, he taken the UML Use-case diagram into consideration, because the Use-case diagram is the simplest
representation of a system to be developed and it's prepared after getting a clear requirement specification. Karner
named his model as 'Use Case Point Method'. During his research, he first surveyed the Function Point method used
for early software estimation and identified some of the shortfalls of it. According to Karner, the greatest advantage

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 280

of Function Point is that it doesn't require a specific way to describe the system, for example a specific design
method. And some disadvantage is that it can't be computed automatically, because we have to make many
subjective decisions and it requires human interference [1].
 The UCP method is the extension of Function Point method with the benefit of requirement analysis in the
object-oriented process. It starts with measuring the functionality of the system based on the use case model in a
count called Unadjusted Use Case Point (UUCP). The same technical factors are used as of Function Points. A new
factor called Environmental Factor is proposed by the author. The author defined the Use Case Points (UCP) as the
product of these three factors (i.e. UUCP, Technical Factors and Environmental Factors). The UCPs shows an
estimation of the size of the system which can further mapped to man hours in order to calculate the effort required
to develop the system.
 In the early steps of obtaining use case point, the author classified the actors and use cases according to
their complexity and assigned some weight factors[1].

• An actor is defined as “Simple”, if it interacts with the system with the help of a defined application
programming interface (API). An actor is defined as “Average”, if it interacts with the help of an
Interactive or Protocol-Driven Interface. The actor is defined as “Complex”, if it interacts through a
Graphical User Interface. The assigned weight factors are 1,2 and 3 respectively.

• An use case is defined as “Simple”, if it's number of transaction is less than 3.An use case is defined as
“Average”, if it's number of transaction is between 4 to 7. The use case is defined as “Complex”, if it's
number of transaction is more than 7. The assigned weight factors are 5,10 and 15 respectively.

In the next step the total Actor and Use case weight is calculated :
UAW =∑(No. of actors * their respective weight factors)

UUCW = ∑(No. of Use cases * their respective weight factors)
 where,
 UAW - Unadjusted Actor Weight
 UUCW - Unadjusted Use Case Weight
After calculating the total weight of Actors and Use cases, the Unadjusted Use Case Point (UUCP) is calculated :

UUCP = UAW + UUCW
After obtaining the UUCP, the Use Case Point is calculated by adjusting the UUCP with two factors called
Technical Factors (TCF) and Environmental Factors (EF) :

UCP = UUCP * TCF * EF
The author have considered the Use case point as a smallest unit of size[1]. Further the effort is estimated by
mapping the UCP with man-hours.

i.e. Effort = UCP * PHper

Karner suggested that on an average, 20 man hour effort is required for each UCP[1].In this method, Karner only
focused on the actor and use case complexity. The internal details are not taken into consideration. Karner counted
the successful scenarios only, the alternative scenarios (exceptions) are not considered.

UCP

The Extended Use Case Point (e-UCP) was proposed by Kasi Periyasamy and Aditi Ghode in 2009[2], by extending
the original Use Case Point by considering some additional information of use cases such as the relationships
between actors, relationships between use cases etc. The authors extended the UCP model with a focus on the
internal details of each use case i.e. the Use case narratives in order to calculate the Software Size and Effort[2].
 In the e-UCP method, the authors used most of the possible aspects of use case model such as actors, use
cases, relationships between actors, relationships between use cases, associations between actors and use cases and
the detailed narrative of each use case. According to the authors, Use case narratives is essential because it reveals
the hidden details of a use case diagram. The authors given a template for a use case narrative by considering the
following factors[2] :

• Use case name
• Purpose
• Input parameters
• Output parameters
• Primary actor

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 281

• Secondary actor
• Precondition
• Post condition
• Successful scenario
• Exceptions
• Includes list
• Included by list
• Extends list
• Extended by list

 The authors have defined a number of steps for calculating UCP, similar to the original UCP method by
Karner. The difference is that in their research, the authors added the unadjusted use-case narrative weights while
calculating the Unadjusted Use-case point (UUCP). The authors have re-classified both the Actor types and Use-
case types and their respective weights.

TABLE I. ACTOR WEIGHT CLASSIFICATION [2]

Actor Type Weight
Very Simple 0.5

Simple 1
Less Average 1.5

Average 2.0
Complex 2.5

Very Complex 3.0
Most Complex 3.5
TABLE II. USE CASE WEIGHT CLASSIFICATION [2]

Use Case Type Weight
Simple 0.5

Average 1
Complex 2

Most Complex 3

After re-classifying the actors and use-cases, the authors have assigned weights to the different parameters of a use
case narrative in the table given below :

TABLE III. USE CASE NARRATIVE WEIGHT CLASSIFICATION [2]

Use Case Narrative Parameters Weight
Input parameter 0.1

Output parameter 0.1
A predict in Precondition 0.1

A predict in Post condition 0.1
An action in successful scenario 0.2

An exception 0.1

All the parameters given in the template are not being used in Table 2 because, according to the authors some of the
parameters do not contribute towards the coding efforts, and some other factors like 'actors' are already taken into
consideration[2].
Calculating e-UCP

1. Calculate the total use case weight factor :
 ∑ Simple use cases * WF + ∑ Average use cases * WF + ∑ Complex use cases * WF+
 ∑ Most Complex use cases * WF

2. Calculate the total actor weight factor :
∑ Very Simple actors*WF +∑ Simple actors * WF +∑ Less Average actors*WF+
∑ Average actor * WF + ∑ Complex actor * WF + ∑ Very Complex actor * WF+

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 282

∑ Most Complex actor * WF
3. Calculate the total Use Case Narratives Weight :

∑ Use Case Narratives * their respective Weight Factors
4. Calculate the Unadjusted Use Case Points (UUCP):

UUCP = UseCase_Weight + Actor_Weight + Narratives_Weight
5. Calculate the Extended Use-case Point (e-UCP) :

e-UCP = UUCP * TCF * EF
 where,

TCF = 0.6 + (0.01 * Ti), for 1 ≤ i ≤ 13 (Technical Factor)
 EF = 1.4 + (- 0.03 * Ei), for 1 ≤ i ≤ 8 (Environmental Factor)

e-UCP can be considered as the smallest unit of size. And the required effort can be calculated by multiplying 20
man-hours with the e-UCP as suggested by Karner. This project was given to graduate students of University of
Wisconsin-La Crosse as a course project and the estimated effort is nearly matched with the actual effort spent by
the students.
Gustavo Bestetti Ibarra and Patricia Villain in 2010[3], proposed a method for estimating software size by
considering the "use case size" as the evaluation factor. The size of each use case is derived by taking the following
three factors into consideration[3]:

• Use Case Type Points (UCTP)
• Number of Business Rules (NBR)
• Number of User Interface Requirements (NUIR)

In the original UCP method, Karner classified the use cases into three categories according to their complexity;
simple, average and complex[1]. According to the authors, this classification depends heavily on the way, the use
cases are written and detailed. Hence, the Karner's method is only suitable if use cases are sufficiently detailed at the
early stages of development, which is not possible in companies adopting agile approach in their software process
[3].
A. Use Case Type Points (UCTP)
The types of use cases defined by the authors here are extensions of two special types of use cases defined by
Cockburn : CRUD and Parameterized Use Cases[4].

TABLE IV. USE CASE TYPES [3]

Sl. Use Case Type UCTP
1 CRUD Use case 2
2 Basic Operation (CRUD) 1
3 CRUD Tabular 2
4 CRUD Master / Detail 4
5 CRUD Detail 3
6 Report 1
7 System Service 3
8 Non-standard Use case 5

B. Number of Business Rules (NBR)
These rules are defined by the company itself to make a significant difference with their competitors and the smooth
function of their business. It differs from company to company. Some of the examples of business rules are listed
below[3] :

1. Calculation rules
2. Information processing rules

The authors have suggested that, the business rules which are already adopted for one use case should not be reused
further.

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 283

C. Number of User Interface Requirements (NUIR)
It is to specify the requirements of the graphical user interface (GUI) for a use case. According to the authors, it is
essential to identify the expectations of users from the GUI in order to interact with the system early in the project.
Some examples of interface requirements are:

1. Nesting and automatic loading of information
2. Data display formats

After obtaining the UCTP, NBR and NUIR variables, the authors given the following formula for obtaining the Use
case Size (UCS)[3]:

UCS = UCTP + α NBR + β NUIR

where α e β are the weights representing the degree of complexity related to the implementation of business rules
and graphical user requirements, respectively. These weights are adjusted by each company according to the tools,
standards and frameworks utilized in their projects. The final project size (UCP) is calculated by the summation of
all use cases sizes (UCSs) adjusted by the technical and environmental factors as defined in the following equation :

𝐔𝐂𝐏 = �(𝐔𝐂𝐒) ∗ 𝐓𝐂𝐅 ∗ 𝐄𝐅
𝒖

𝒏=𝟏

where u is the number of use cases.
This method was utilized in the Labor Court of Santa Catarina - Brazil to provide support to the negotiation process
with third party companies that outsource software development[3].
Yaeghoob Yavari et.al in 2011[5], identified that the Use case point method proposed by Karner doesn’t have
enough accuracy, because of the inaccuracy in determining Use Case complexity metrics. The authors found that,
the definition and the identification of transactions is the most difficult part of UCP. The definition which states that,
"Transaction is a set of activities in use-case-scenarios (that is meaningful to the actor), which is either performed
entirely, or not at all, and leaves the business of application in consistent state", is not clear enough[8]. Different
researchers have defined use case transactions in different ways. Some of them are listed below :
According to Ivar Jacobson, inventor of Use Case; "A transaction of Use Cases is such as a mutual interconnection
vector and route within a period of schedule from user to system and again it returns to user. A transaction
terminates when system expects one stimulus".
According to Karner, the inventor of UCP;

• A transaction is not always a specific stage of Use Case flow.
• A transaction is not a stimulus. Also a transaction is not an operation of an activity for basis data.

According to M.Ochodek, J, and Nawrocki, transactions have 2 parts:
• Request of user.
• Response to system request [6].

According to the authors, a transaction consists of 4 steps:
• Primary actor sends the request and the data to the system
• The system validates the request and the data;
• The system alters its internal state;
• The system replies to the actor with the result[5].

According to the authors, the transaction doesn't stood as a good and efficient criteria for determining the Use case
complexity and calculating Unadjusted Use Case Weights (UUCW) due to the following reasons[5] ;

• Transactions contain ambiguous criterion.
• Transactions contain different complexion levels.
• There is no specific guideline for writing user cases. It varies person to person.

So the authors introduces several new use case complexity metrics in order to reduce project risks and improve
customer satisfaction. Those metrics are listed below :

• Type of the Use Case (UCT)
• Priority of the Use Case (UCP)
• Goal Levels of Use Case (UCGL)
• Number of Main and Alternative Scenarios (NMAS)
• Related Actor Types (TRA)

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 284

• Number of Related Database Entity (NRED)
According to the above mentioned factors introduced as Use Case metrics, the authors managed to put them all in a
table given below in order to determine the complexity level of Use cases:

Use
Case
ID

Goal
(Summary
Description)

U
C

T*
W

F

U
C

P
*W

F

U
U

G
L

*
W

F

N
M

A
S*

W

F

B
R

 *
W

F

T
R

A

*W
F

N
R

ED

*W
F

Fi
na

l
W

ei
gh

t

#01

#02
TOTAL UUCP =

After calculating the final weight of each use case, the authors given a formula for calculating the Unadjusted Use
Case Weight (UUCW) [5]:

UUCW = ∑ (Final Weight of each Use case)
In this method, authors calculated the UUCW for each individual use case and calculated the final weight by
summing them all. Here, the authors didn't consider the Unadjusted Actor Weight (UAW), because in their study
they found that, with and without UAW provides similar prediction accuracy[5].

III. SUMMARY
After reviewing all the above mentioned papers, the authors found that, in each paper, the researchers taken several
new factors of UML Use Case into consideration for calculating the UCP. The authors summarized them and
managed to put them all in the following table:

Sl
No.

Paper Model Factors Formula(s)
(if any)

What is
estimated

Validation

1

G
. K

ar
ne

r [
1]

U
se

 C
as

e
Po

in
t (

U
C

P)
 • Complexity

of Use cases
• Complexity

of Actors

UCP = UUCP * TF *
EF

Where,
UUCP =
UseCase_WeightFactor
+ Actor_WeightFactor
 TF = 0.6 (0.01 * TWF)
 EF = 1.4 + (-0.03 *
EWF)

Software
Size & Effort

YES
Developed for
Objectory (now
Rational
Software).

2

K
as

i P
er

iy
as

am
y

an
d

A
di

ti
G

ho
de

 [2
]

Ex
te

nd
ed

 U
se

 C
as

e
Po

in
t (

e-
U

C
P)

• Input
parameters

Use Case
Narratives

• Output
parameters

• Precondition
• Post-

condition
• Successful

scenario
• Exceptions

e-UCP = UUCP * TCF
* EF

Where,
UUCP =
UseCase_WeightFactor
+
Actor_WeightFactor+
Narratives-
_WeightFactors

Software
Development
Cost

NO
This method use
the same
technical and
environmental
factors proposed
by Karner. The
authors have
planned to revise
those factors for
better result.

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 285

3

G
us

ta
vo

 B
es

te
tti

 Ib
ar

ra
 a

nd
 P

ar
tri

ci
a

V
ill

ai
n

[3
]

U
se

 C
as

e
Si

ze

• Use Case
Type Points
(UCTP)

• No. of
Business
Rules (NBR)

• Number of
User
Interface
Requirement
s (NUIR)

UCS=UCTP+αNBR
+βNUIR

SIZE = ∑ 𝑈𝐶𝑆 ∗𝑈

𝑁=1
𝑇𝐶𝐹 ∗ 𝐸𝐹

Software
Size

YES
Applied to the
project of the
Administrative
Lawsuit
Management
System (PROAD
TRT/SC)
developed by the
TRT/SC

4

Y
ae

gh
oo

b
Y

av
ar

i,
M

oh
se

n
A

fs
ha

rc
hi

an

d
M

oj
ta

ba
 K

ar
am

i
[5

]

N
ew

 U
se

 C
as

e
C

om
pl

ex
ity

 M
et

ric
es

• Type of Use
Case(UCT)

• Priority
ofUse
Case(UCP)

• Goal Levels
of Use
Case(UCGL)

• Number of
Main and
Alternative
Scenario(NM
AS)

• Related
Actor Types
(TRA)

• Number of
Related
Database
Entity
(NRED)

• Business
Rules (BR)

UUCW = (UCT *WF)+
(UCP*WF)+
(UCGL*WF)+
(NMLS *WF)+
(BR *WF)+
(TRA*WF)+
(NRED*WF)

Software
Development
Cost

NO
Yet to be
validated. Still in
data capturing
stage.

IV. CONCLUSION
This paper has highlighted the importance of software size and effort estimation in the early stages of software
development. In this survey, we have reviewed several papers on Use Case Point method used for early software
estimation. Several researchers have done remarkable work by extending the UCP method with Soft Computing
methods such as neural networks, fuzzy logic etc. But the paper has mainly focused on the original UCP method
artifacts and highlighted different factors or artifacts of use case dig. used by researchers. It has been found that the
effectiveness of the UCP method mainly depends on the way the use case transactions are counted. So a need for
further planning is required to simplify the way of counting transactions by redefining them as well as we have
planned to introduce some new environmental factors in order to obtain more precise and accurate result.

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 286

V. REFERENCES
[1] G. Karner, "Metrics for Objectory", Diploma thesis,University of Linköping, Sweden. No. LiTHIDA- Ex- 9344:21.December 1993.
[2] K. Periyasamy and A. Ghode, "Cost Estimation Using Extended Use Case Point (e-UCP) Model", International Conference on

Computational Intelligence and Software Engineering, 2009 .
[3] G. Ibarra and P. Villain. "Software Estimation Based on Use Case Size, Brazilian Symposium on Software Engineering, 2010.
[4] A. COCKBURN, “Writing Effective Use Cases”. Addison-Wesley, 2001.
[5] Y. Yavari. "Software complexity level determination using software effort estimation use case points metrics", Malaysian Conference in

Software Engineering, 12/2011
[6] M. Ochodek and J. Nawrocki,” Automatic Transactions Identification in Use Cases In: Balancing Agility and Formalism in Software

Engineering,” 2nd IFIP Central and East European Conference on Software Engineering Techniques, 2008.

Preetam Pratap Jena et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 287

	Survey Report on Software Cost Estimation using Use Case Point Method
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. SUMMARY
	IV. CONCLUSION
	V. REFERENCES

