
Detection and Removal of Bad Smells
instantly using a InsRefactor

Vignesh.P
PG Research Scholar

Department of Computer Science and Engineering
Sona College of Technology, Salem

jackvignesh@gmail.com

P. Ramya
Assistant Professor

Department of Computer Science and Engineering
Sona College of Technology, Salem

shriramyabe@gmail.com

ABSTRACT--Software refactoring is one of the essential techniques which are used to improve the
software quality without affecting any of the external functionality of the software. There were numerous
of software refactoring tools and code smells detection tools which are to be automatic or semi automatic.
Most of these tools were human driven, so Software refactoring depends on developers’ spontaneity. Due
to little experience in software refactoring this may cause poor software quality and delays in refactoring.
For this, we have proposed a framework called Instant Refactoring by Monitor framework using Ins
Refactor which helps the inexperienced software engineers to do more refactoring quickly. Source code
are instantaneously analyzed by the Monitor, if changes occur and it to be a code smells (symbols of
possible problem in the code which requires refactoring) then framework invokes smells detection tools
which helps the programmer to resolve the bad smells instantly without delay in time. The proposed
framework has been evaluated, implemented and compared with the human-driven refactoring tools.
Keywords: Software Refactoring; Code Smells Detection; Monitor; clamant refactoring; Feature Envy.

I. INTRODUCTION
Software Refactoring [1] , [2] is to reframe the code in a series of small interior structure of objected

oriented software that to improve the software quality based on the terms of maintainability, extensibility and
reusability without changing the external behavior of the software. The term Refactoring was first proposed by
Opdyke [2] after it became popular by the book written by Fowler et.al that published in the year 1999.
Refactoring was tracked by the re-structuring [4] which was the extended history in the literature. Kim et .al
assessed the value of software refactoring within Microsoft and suggested that refactoring is visible.Software
refactoring tools are significant to support. For this, researchers have proposed tools to provide software
refactoring. Most predictable Integrated Development Environment (IDE) such as Eclipse, Microsoft Visual
Studio and IntelliJ IDEA provide tool support to conduct refactoring [5].

Developers have to identify the refactoring opportunities’ if not they can’t apply refactoring tools.
Researchers have précised a number of typical situations which may need refactoring which Fowler calls bad
smells. Experts proposed various Smells detection algorithms that to identify different kinds of code smells that
may be automatic or semi-automatic [6][7].

Extant refactoring tools and smells detection tools are inactive and human driven. Murphy Hill et.al, [8]
programmers fail to invoke refactoring tools and smells detection tools which may result in delay of refactoring
and results in higher cost of refactoring. The reason for this is that unaware of extant tools, don’t know where to
invoke the tools and when to detect and resolve code smells.

This paper is to make the essential to take inexperienced software engineers to carry out more software
refactoring quickly. Next we proposed an Monitor based clamant refactoring framework. Finally, we apply and
evaluate the proposed framework and the result might help inexperienced software engineers in remove more
code smells quickly.

This paper is ordered as follows, Section describe the related work, Section 3 present a framework of the
clamant refactoring with Monitor, and its description Section 4 shows the evaluation of the framework, Section
5 shows the conclusion and future work.

Vignesh.P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 474

mailto:jackvignesh@gmail.com�

II. RELATED WORK
A. Refactoring tools
To process software refactoring, various refactoring tools are available. The market is rapid and has a

bunch of refactoring tools. For example: Refactoring Browser, JRefactory, IntelliJ IDEA, Eclipse and Visual
studio. Extant refactoring tools can’t be invoked until refactoring opportunities are identified by the software
engineers with the help of code smells detection tools it may be automatic or semi automatic. The time and the
occurrence for refactoring is depend upon the developer intent. The characteristics that affect the usability of a
tool are automation, consistency, configurability, exposure and scalability of refactoring tools.

Researchers are attempting to improve the usability of refactoring tools Murphy-hill and Black [9] proposes
the five values to improve the usability of refactoring tools. The extent of automation of a refactoring tool varies
depending upon the refactoring activities. The reliability of a refactoring tool mostly depends upon the ability to
guarantees that is provide refactoring transformation are truly behavior preserving contemporary software
development tool only support primitive refactoring.

B. Smells detection
According to Beck, bad smells are “Structure in a code that suggests the possibility of refactoring”. Bad

smells are the signs of potential problems in the code that might require refactoring. Bunch of code smells
detection tools for both automatic and semi automatic are available for various bad smells detection. Travassos
et.al [10] proposed a technique called reading technique which makes the developer to identify the bad smells.
Tourwe and Mens proposed an algorithm named smells detection algorithm with Logic rules in SOUL, Logic
programming language that to identify the bad smells in the logic programs. Moha et al proposed a smells
detection algorithm especially for Domain specific language (DSL) which is similar to that of Tourwe and Mens
algorithm but slightly different in detection.

Munro proposed the Metric based approach which is a smells detection algorithm for java program. Van
Rompaey et .al extent the Munro algorithm with the feature of detection of two kinds of smells general fixture
and eager test. Tsantalis and Chatzigeorgiou proposed a genetic based algorithm which has to find out the bad
smells Feature envy and it can refactored by move method.

III. FRAME WORK
This section shows the clamant refactoring with Monitor framework which takes out the developer to detect

and resolve bad smells. Figure: 1, Show the overview framework of our proposed system which may contains
the monitor, smells detection, smells view, refactoring tools, and feedback controller. Each may have their own
role that to make a clamant refactoring if there may be any changes occur in the source code which leads to the
need of refactoring technique. This frame work may help the programmer to analyze code smells instantly
whenever source code changes occur and results in potential code smells. The Framework shows the detection
and removal of the various code smells. When a programmer make a changes in the source code then the
changes are get analyzed by the monitor. Monitor analyzes the changes and those changes are get forwarded to
Smell Detection. Smell detection encloses the Code Smell Detector and Refactoring Manager. The various code
smell detection algorithm are integrated and based upon the code smell the refactoring methods are suggested to
the developer. So that the developer can easily identify the code smells and refactoring methods to resolve those
smells. Developer can able to view the suggestion of code smell through the smell view. Smell view is the small
message box that to show the details of code smell. Developer can close the smell view and can continue the
programming

Figure 1.Overview of the Framework

Vignesh.P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 475

The framework is composed up of an Monitor, collection of smells detectors and a smells view, a feedback
controller. These will be explained individually explained by the following paragraphs.

C. Monitor
Monitor oversees the changes made on the source code .This may run in the background of the source code,

if it analyzes some changes in source code then it calls for smells detectors. This has to perform instantly and
take out the knowledge of smells to the developer. Monitor helps the developer to view the code smells with the
help of Smells view. Monitor is meant to give a warning so that a mistake can be avoided by the developer.

D. Smells detectors & Refactoring tools
This may contains a collection of code smells detectors for various code smells like Data class, Large

Class, Long Method, Switch Statements, Public Field, and Common Methods in Sibling Classes, Duplicated
Code and Feature Envy. Refactoring tools are to be extant one but a detection algorithm is to be different from
extant which may carry out by this InsRefactor tool. We improve the performance of this tool by improving the
tool tendency to detect more code smells.

E. Feedback controller
Various control algorithms are defined for smells detection algorithm to improve readability of the

framework, feedback control algorithms are get implemented in the prototype. These control algorithms are
similar and simple template. This control algorithm improves the performance of the framework.

F. Smells View
If the changes occur in a source code it forwards to a code smells detectors which detect the bad smells and

these smells are viewed with the help of smells view to the developer. This helps the developer to easily identify
the location and invoke the refactoring technique. The developer can quit the smells view and continue coding.
The smell view helps the programmer in a friendly way of displaying the code smell and the extracting method
for the particular identified code smell.

IV. EVALUATION
Clamant refactoring is to take out the inexperienced software engineers to make them to do more

refactoring quickly. In earlier refactoring the developer used to detect the smells by manual driven but it takes
more time for lesser refactoring. This clamant refactoring may facilitate more refactoring with leisure time with
large number of resolved code smells.

In the earlier InsRefactor [11] prototype implementation the eight kinds of smells were detected. The
prototype has implemented for the detection of Data class, large class, Long Method, Switch Statement, Public
Field, Sibling Class, Duplicated Code, and Long Parameter List that is based on JCCD [12]. This prototype is
based on the Eclipse and Java. Modified source code is get compared with the all other source code which to
make identification for similarities. Identified Smells are notified in the smells view where developer can easily
notify the bad smells.

InsRefactor is the tool which has to identify the wrong method location called feature envy smells. This tool
has been plugged in the eclipse through that the developer can detect the bad smells. Feature Envy refers to
smells in which when the methods makes too many calls to other classes to obtain data or functionality. The
detection strategy for Feature Envy can be given by,
Feature Envy = maxc ≠ cm(|Fc |) - |Fcm

where,
| (1)

 m-the method, for which we want to calculate the feature envy,
Fc--

c
the set of features used by m that belong to type c

m--

Using the above Detection Strategy the Feature envy code smells can be detected. This is Conventional
based detection strategy which helps to detect the feature envy smells promptly. Not only the feature envy
smells detector, the various code smells detector are get integrated in our InsRefactor tool that detects the
various code smells and helps the programmer to resolve the smells.

the class in which m is defined

This InsRefactor helps the programmer to identify the code smells instantly and helps in doing the
refactoring without delay in process. This InsRefactor get processed with the one team of the developers and
another team get processed without the InsRefactor. From the observation among the two developers it shows
the team who carries out the InsRefactor makes the Refactoring promptly without any delay in their schedule
whereas the team without the InsRefactor feels difficult to do refactoring and delays in their process, so they
cause delay in schedule and makes the software cost to be more.

Vignesh.P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 476

Figure: 2 Evaluations of Code Smells

The Figure:2 shows the graph which represents the variation of identification of nine kinds of bad
smells like Data Class ,Large Class, Long Method, Switch Statements, Public Field, Sibling Class, Duplicated
Code, Large Parameter List, Feature envy among the two group peoples. The Group 1 is the team of
programmers who carries the InsRefactor and the Group 2 peoples works without InsRefactor. From the above
chart we can able to identify that the variation between two groups. The different kinds of code smells charted
above are most common code smells which occurred mostly during the programming. InsRefactor tool helps the
programmer to identify the code smells promptly. The Lifespan and range of the various kinds of code smell
differs at each level of programming.

V. CONCLUSION & FUTURE WORK
This paper is to make the inexperienced developer to do more refactoring quickly. We propose a Clamant
refactoring with Monitor framework which makes the developer to identify the changes of the source code that
results in the bad smells and to resolve bad smells.
This paper explains the various bad smells detection algorithms and refactoring tool of InsRefactor. This
framework has to detect the nine kinds of bad smells. To improve the performance of the framework, improve
the functionality of the framework by enhancing the more refactoring tools which to identify more bad smells
with various bad smells detectors and to resolve it use various refactoring methods.

VI. REFERENCES
[1] T.Mens and T.Touwe, ”A Survey of Software Refactoring,IEEETransactions.SoftwareEng” vol.30, no.2, pp.126-139, Feb.2004.
[2] W.F.Opdyke,”Refactoring Object-Oriented Frameworks,” PhD dissertation, Univ. of Illinois at Urbana-Champaign, 1992.
[3] W.F.Opdyke,”Refactoring Object-Oriented Frameworks,” PhD dissertation, Univ. of Illinois at Urbana-Champaign, 1992.
[4] R.Arnold,”An Introduction to Software Restructuring,” Tutorial on Software Restructuring, R.Arnold,ed. IEEE CS Press,1986
[5] E.Mealy and P.Strooper, “Evaluating Software Refactoring Tool Support,” Proc. Australian Software Eng. Conf., pp.331-340, 2006.
[6] T.Kamiya, S.Kusumoto, and K.Inoue, “CCFinder: A Multi Linguistic Token Based Clone Detection System for Large Scale Source

Code,” IEEE Trans. Software Eng., vol.28, no.6 ,pp.654-670, July 2002
[7] N.Tsantalis and A.Chatzigeorgiou,”Identification of Move Method Refactoring Opportunities,” IEEE Trans. Software Eng., vol.35,

no.3, pp.347-367, May/June 2009.
[8] E.Murphy-Hill, C.Parnin, and A.P. Black, “How WE Refactor, and How WE Know IT,” IEEE Trans. Software Eng., vol. 38, no.1,

pp.5-18, Jan/Feb. 2012.
[9] E.Murphy-Hill and A.P Black, ”Refactoring Tools:Fitness for Purpose, “IEEE Software, vol. 25, no.5, pp.38-44, Sept./Oct. 2008.
[10] G.Travassos, F.Shull, M.Fredericks, and V.R Basili, “Detecting Defects in Object-Oriented Designs:Using Reading Techniques to

Increase Software Quality,”Proc. 14th ACM SIGPLAN Conf. Object-Oriented Programming System,Languages, and Applications, pp.
47-56, http://doi.acm.org/10.1145/320384.320389, 1999.

[11] Hui Liu, Xue Guo, and Weizhong Shao, ”Monitor-Based Instant Software Refactoring”,IEEE Transactions on Software Engineering,
vol. 39, no. 8, August 2013.

[12] B.Biegel and S.Diehl,” JCCD:A Flexible and Extensible API for Implementing Custom Code Clone Detectors,”Proc. 25th IEEE/ACM
Int’l Conf. Automated Software Eng.,pp.167-168,Sept. 2010.

Vignesh.P et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 04 Apr 2014 477

http://doi.acm.org/10.1145/320384.320389�

