
A Comparative Analysis of BRIDGE and
Some Other Well Known Software

Development Life Cycle Models
Ardhendu Mandal

Department of Computer Science and Application, University of North Bengal, Raja Rammohunpur, P.O.-
N.B.U., Dist-Darjeeling, State-West Bengal, Pin-734013, India.

*

am.csa.nbu@gmail.com

S. C. Pal
Department of Computer Science and Application, University of North Bengal, Raja Rammohunpur, P.O.-

N.B.U., Dist-Darjeeling, State-West Bengal, Pin-734013, India.
schpal@rediffmail.com

Abstract— The existing Software Development Life Cycle Models (SDLC) models were quite successful
earlier, but are rarely used in modern software development because of their limitations and non
suitability for modern projects. To cater with the present software crisis, Mandal [13] proposed a SDLC
model named BRIDGE for modern software development. In this paper we have outlined the BRIDGE
process model. Further we performed a comparative analysis of the existing well know models and
BRIDGE. Then, we discussed the results of the comparative analysis. Finally we conclude by
recommending the BRIDGE process model to be the best generic process model for software development
suitable for modern software development projects.
Keywords- Software Development Process Model (SDLC), BRIDGE Process Model, Comparative Analysis.

I. INTRODUCTION
The rapid development in the hardware technology has made modern processors very efficient and powerful.

Hence, the expectations from the software have gone to zenith. But the complexity of the modern software are
much complex as compare to those of earlier. Development cost, time and quality of the modern software are in
crisis. There are several Software Development Life Cycle (SDLC) Models i.e. Classical Waterfall, Spiral,
Prototype, V-Model, evolutionary model etc. All these SDLC models have several advantages as well as some
limitations. A software (SW) project, irrespective of its size, goes through certain defined stages, which together,
are known as the Software Development Life Cycle (SDLC). Life Cycle refers to the different phases involved
starting from the project initiation to project retirement. For better understanding and implementation of the
various phases of software development, different software development models have been developed and
proposed so far. A few well known models are waterfall model, spiral model, evolutionary model, prototype
model, V model etc. It is pre established that different SDLC models have different capabilities and limitations.
Hence, selecting suitable SDLC model for any project is quite crucial as not all process models are good for any
type of project. Hence, analyzing the different SDLC model is significant and helps one to select the appropriate
model for a project. Recently a few more new process models are proposed with the well known traditional
models to accommodate the new industrial needs.

II. SOFTWARE DEVELOPMENT APPROACH, PROCESS AND PROCESS MODEL
It is really tough to draw a sharp line between software development approaches and SDLC process models.

In many literature of software engineering, these terms are used interchangeably or confusedly. So, before we
begin the details discussion of the topic, let us somehow draw the boundary line between software development
approaches and SDLC process models. Defining these two terms are beyond the scope of this paper. Here we just
try to explain both only to establish the differences from our point of view. SW development process or simply
process typically defines the set steps to be carried out during the development of the system. SW development
life cycle (SDLC) is the time from the concept development to the product retirement i.e. the time of SW process.
SW development life cycle (SDLC) process model typically depicts the fashions in which the SW process to be
carried out i.e. which steps/phases to be done before or after another step/phase. In general all the process models
do cover all distinct phases defined by SW process, but in different manner or sequence- which makes one
process model differ from the other. In other words, a software development process model is an approach to the
Software Development Life Cycle (SDLC) that describes the sequence of steps to be followed while developing
software projects [10, 18]. We consider Agile, incremental, extreme and iterative as approach or philosophy to
software development rather than as process model which can be implemented following other process models
i.e. Waterfall, RAD, Spiral, Prototyping or alike.

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 196

mailto:am.csa.nbu@gmail.com�
mailto:schpal@rediffmail.com�

III. DIFFERENT WELL KNOWN SDLC PROCESS MODELS
 Many people have proposed different software development process models. Many are quite same in
different aspects while other differs. Here we just consider some well known SDLC process models enlisted
below:

Waterfall Model: It is a software development model with strictly one Iteration/phase. In this process
model, development proceeds sequentially through the phases: requirements analysis, design, coding, testing,
integration, and maintenance [23

Evolutionary: Evolutionary development uses small, incremental product releases, frequent delivery to
users, dynamic plans and processes. The evolutionary development model divides the development cycle into
smaller, incremental waterfall models in which users are able to get access to the product at the end of each
cycle. The users provide feedback on the product for the planning stage of the next cycle and the development
team responds accordingly by changing the product, plans, process etc [7, 17].

].

Prototype Model: It is a software development process that begins with requirements collection, followed
by prototyping and user evaluation. This model facilitates to discover new or hidden requirements during the
development [8].

Spiral Model: This process model proposes incremental development, using the waterfall model for each
step, with more emphasis on managing risk [3].

V-Model: This is an extension of the waterfall model which emphasizes parallelism of activities of
construction and verification. Here, the process steps instead of moving down in a linear way bend upwards
after the coding phase resulting in the typical V shape formation.

RAD Model: It is a software development process that allows usable systems to be built in as little as 60-90
days, often with some compromises.

The details discussion of these SDLC model is beyond the scope of this paper, but just highlight the features
of these models which are important for considerations. The readers may follow the references for further detail
discussion of these process models [16, 21, 15]. In the following section we just briefly explain the SDLC model
BRIDGE which is our prime concern.

IV. BRIDGE PROCESS MODEL IN A NUTSHELL
Although the details discussion of the BRIDGE model is beyond the scope of this paper, just the schematic

diagram of the BRIDGE process model is given below in Figure 1 with its analytical results.
The in-depth study of the BRIDGE model discloses a lot of information that may be used to analyze the

model. These are briefly discussed below [13]:
- It involves the client over the entire development life cycle activities.
- It keeps continuous communication with the project management team.
- It explicit verification of individual phases.
- Separate software architecture design phase.
- Separate system deployment phase.
- Separate on-site system testing phase.
- Supports components based software development.
- It emphasizes on standard coding.
- It considers configuration management as a separate activity.
- It forces to specify all the phase deliverables.
- It explicitly instructs to validate the system.

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 197

Figure 1. BRIDGE Process Model [13]

V. PARAMETER SELECTION FOR COMPARATIVE ANALYSIS
Below we enlist and discuss briefly the parameters alphabetically those we have considered for the purpose of

comparative analysis:
Adaptability: This is the ability to react to operational changes as the project is developed. Change orders are

easily assimilated without undue project delay and cost increases.
Budget: Budget remains one of the most significant crisis for software development projects. Some process

model like Spiral and Prototyping increases the project cost as compared to others. Hence a SDLC process model
has great impact on software development cost or budget.

Changes Incorporated: Change is unavoidable in software development. Managing change is a critical
component of any SDLC model. Change Management and SLDC are not mutually exclusive. Change
management occurs throughout the development life cycles which need to be incorporated in the system
development.

Complexity of the SDLC: Different SDLC process model have varying degree of complexity. Some are easy
to use and implement while others are not.

Documentation: Documentation of software development process is very important but time consuming and
expensive. To reduce development time and cost, agile philosophy recommends less document which remains
one of the most important critic of agile philosophy. Documentation plays vital roles in system development,
implementation, maintenance and project management. But, not all process models facilitate and recommend
adequate and sufficient documentation.

Expertise Required: Although some process models are better over others, but need some kind of expertise
during its use and implementations in various phases at varying degrees. To avail the advantages of some process
models i.e. Spiral, BRIDGE [13] and others which supports reusability- the software engineers required certain
level of expertise.

PROJECT MANAGEMENT

C
L
I
E
N
T

I
N
T
E
R
A
C
T
I
O
N

C
O
N
F
I
G
U
R
A
T
I
O
N

M
A
N
A
G
E
M
E
N
T

Requirement Gathering, Analysis,
Verification and Specification

Feasibility & Risk Analysis,
Verification and Specification

Software Architecture Design,
Verification and Specification

Detailed Software Design, Verification
and Specification

Pattern & Component Identification,
Searching, Verification and

Component Adaptation, Standard

Coding, Unit Testing, Verification and
Specification

System Testing & Validation,
Verification and Specification

Component & Code Integration,
Integration Testing, Verification and

System Deployment, Onsite Testing,
Verification and Specification

System Maintenance,
Verification and Specification

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 198

Flexibility: The freedom afforded to software architects, analysts or developers to tailor the software
development process according to business needs and project characteristics is a crucial factor in successful
project completion. The software development organization often can benefit from introducing flexibility into
their software development methodologies [20].

Guarantee of Success: This is really crucial to measure whether any process model will guarantee success or
not. If so, up to what extent wills the process model guarantees the success is a big question need to be explored.
As the project success depends upon many other constraints and parameters, but given the other parameters as
desired, project success may vary from following one SDLC model to another.

Integrity & Security: Including security early in the system development life cycle (SDLC) will usually
result in less expensive and more effective security than adding it to an operational system. To be most effective,
information security must be integrated into the SDLC from its inception [9].

Maintenance: Systems are dynamic and the model offers the ability to produce a final project that is
inherently designed for maintenance. This includes such items as cumulative documentation.

Management Control: Management will have the ability to redirect and if necessary redefine the project
once it is begun. A key phrase is ‘incremental management control’, with each step under tight management
control. Management control has great impact on project success.

Overlapping Phases: Each step of the project is to be completed before another is begun. Project modules
are distinct and easily identifiable.

Parallel development: Parallel development support, if possible to employ may increase productivity and
reduce development time while optimally utilizing the resources.

Productivity: The SDLC must ensure that the expected return on investment (ROI) for each project is well
defined. The SDLC must minimize the unnecessary rework. It must be designed in such a way as to take
maximum advantage of the computer assisted software engineering (CASE) tools. At the same time the SDLC
must utilize the resources most effectively and efficiently to improve the productivity.

Progress Measurement: Progress measurement allows development team as well as the project management
team to determine how well tasks were estimated, how well they were defined, and whether items are completed
on-time and within-budget. Any SDLC process model should provide the facility to measure the progress during
the system development.

Quality Control: Each module of the project can be thoroughly tested before another module is begun.
Project requirements are measured against actual results. Milestones and deliverables can be used for each step of
the project.

Requirements Specification: Depending on the project nature, the requirement may be identified at the very
beginning of the project development or may be discovered during the development process. But, not all process
model supports requirement discovery over the development process. Hence, requirement specification may be
static or may be dynamic. Any SDLC process model should take into account the issue of requirement
specification.

Requirements Understanding: Some process model needs the requirement must be well understood before
the development process stated, while other may allow understanding the requirements over the development
process. One may start with the initial understanding of the requirement and during the development the
requirement understanding increases gradually.

Reusability: Reusability is one of the most significant and efficient attribute of any SDLC process model
these days. Reusability helps to improve system productivity, reduce cost and system delivery on-time. The
degree of reusability support may vary from one process model to another.

Risk Involvement: The risk involvement may vary from one model to another depending on the nature of
requirement understanding capability support by the process model. Apart from this, there may be several other
sources of risks involvement.

Risk Management: Different types of risks are implicit part of any project. Levels of risk are identifiable
and assessment strategies available. Strategies are proved for over-all and unit risks.

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 199

Table: 1 Comparative Analysis

 Models BRIDGE Waterfall Prototype Evolutiona
ry

Spiral RAD V-Shape
Parameters
Adaptable Excellent Limited Good Good Excellent Limited Limited
Budget Low Low High Low High Low Low
Changes
Incorporate

Easy Impossible
/ Difficult

Easy Easy Easy Easy Difficult

Complexity Medium Simple Moderate Complex Complex Medium Simple
Documentat
ion

Yes Strong Weak Moderate Moderate Poor/
Limited

Yes

Expertise
Required

Medium Low Low Low High Medium Medium

Flexibility Flexible Inflexible Highly
Flexible

Highly
Flexible

Flexible High Rigid

Guarantee
of Success

High Less Good Good High Good High

Integrity
and Security

High Vital Weak Weak High Vital Limited

Maintenanc
e

Easily
Maintaine
d

Least
Glamorous

Routine
Maintenan
ce

May be
overlooked

Typical Easily
maintaine
d

Lest

Managemen
t Control

Yes,
Dedicated

No No Weak Moderate Weak Weak

Overlapping
Phases

May be No Yes Yes Yes No No

Parallel
Developmen
t

Supported No No Limited Limited No Limited

Productivity Highest High Improved Improved High Improved Improved

Progress
Measureme
nt

Measurabl
e

Easily
Monitored

Measurabl
e

Measurable Measurable Measurabl
e

Measurabl
e

Quality
Control

Very
Good

Poor Moderate Good Good Adequate Moderate

Requiremen
ts
Specificatio
n

Adaptable
/Dynamic

At the
Beginning

Frequently
Changed

Frequently
Changed

At the
Beginning

Time-box
Release

At the
Beginning

Requiremen
ts
Understandi
ng

Well
Understoo
d

Well
Understoo
d

Not Well
Understoo
d

Not Well
Understood

Well
Understood

Easily
Understoo
d

Easily
Understoo
d

Reusability Excellent Limited Poor Poor Moderate Moderate Moderate

Risk
Involvement

Low High Low Moderate Low Little Low

Risk
Managemen
t

Highly
Supporter

Not
Considered

Moderate Good Highly
Supporter

Poor No

Simplicity Intermedia
te

Simple Simple Intermediat
e

Intermediate Very
Simple

Simple

System
Delivery

Early and
periodic
partial
operationa
l system

At the end
of the
system
developme
nt

At the end
of the
system
developme
nt

Early and
periodic
partial
operational
system

At the end of
the system
development

At the end
of the
system
developm
ent

At the end
of the
system
developm
ent

Time Shortest Short Long Long Long Short Short
Understand
ability and
Implementa
tion

Moderate Easy Easy Moderate Complex Moderate Easy

User
Involvement

Througho
ut Process

At the
beginning

High/Up to
design
phases

Throughout
Process

High Througho
ut Process

At the
beginning

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 200

Simplicity: Any model need is easy to understand and to implement. Simplicity of any process model
reduces the burden of expertise and improves productivity while reduce development cost and project risk.

System Delivery: The system may be delivered either partially as individual operational module wise or as
the complete system with full functionality at once.

Time: Time is actually referred to as Time Horizon because we are interested in knowing the projected
completion of the project. The development time may vary from one process to another.

Understandability and Implementation: Different process model may need varying level of expertise.
Simple and better understandable process model are always easy to implement.

User Involvement: Any model lends itself to strong and constant end-user involvement. This includes project
design as well as interaction during all phases of project development.

VI. COMPARATIVE ANALYSIS

The comparisons among different SDLC models in respect to the features discussed above are illustrated in
Table 1 [2, 12, 11, 6, 19, 22, 5, 14, 1, 4]. From the above comparative analysis, it is established that the BRIDGE
process model possesses many suitable features in comparison to the other process model.

VII. CONCLUSION

There exist several well known SDLC process models. One process model has different comparative
advantages from the others in many respects. But no process model is just good for any type of project. So it is
not blindly recommended to choose any process model for any project! The above comparative study shows that
overall the BRIDGE process model has several competitive advantages over the other existing well known
process models. As BRIDGE model has excellent adaptability, supports process tailoring and other attributes, we
recommend this SDLC process model to be used for any types of software development projects.

VIII. FUTURE WORK

In near future we would like to validate the result of this theoretical comparative analysis by means of
practical experimental statistical results. We are implementing several instances of one sample project following
BEIDGE and different other models individually by different teams to perform practical experimental
comparative analysis. During the experimental we shall refine the BRIDGE model if necessary to make this
model the best alternative among the others. Further, we are working to explore the different ways to achieve the
agile philosophy following BRIDGE process model.

REFERENCES
[1] Alexander L. and Davis A., Criteria for Selecting Software Process Models, presented at COMPSAC, 1991.
[2] Ali M.N. M. and Govardhan A., A Comparison Between Five Models Of Software Engineering, International Journal of Computer

Science Issues, 7(5), 2010.
[3] Boehm B. W., A Spiral Model of Software Development and Enhancement, IEEE Computer, 21(5), pp. 61-72, 1988.
[4] Comer, E., Alternative Software Life Cycle Models, Proc. of International Conference on Software Engineering, 1997.
[5] Davis, A, Bersoff, E, Comer, E, A Strategy for Comparing Alternative Software Development Life Cycle Models, IEEE Transactions

on Software Engineering, 14(10), pp. 1453-1461, 1988.
[6] Dholakia P. and Mankad D., The Comparative Research on Various Software Development Process Model, International Journal of

Scientific and Research Publications, 3(3), 2013.
[7] Elaine L. May and Barbara A. Zimmer, The Evolutionary Development Model for Software, Hewlett-Packard Journal, 1996.
[8] Gomma H. and Scott D. B. H., Prototyping as a tool in the specification of user requirements. Proc. of Fifth Int. Conf. on Software

Engineering, pp. 333-341, 1981.
[9] Grance T., Hash J. and Stevens M., Security Considerations in the Information System Development Life Cycle, NIST SPECIAL

PUBLICATION 800-64 REV. 1, 2003.
[10] Guimares L. and Vilela P., Comparing Software Development Models Using CDM, Proceedings of The 6th Conference on

Information Technology Education, New Jersey, pp. 339-347, 2005.
[11] Hijazi H., Khdour T. and Alarabeyyat A., A Review of Risk Management in Different Software Development Methodologies,

International Journal of Computer Applications, 45(7), 2012.
[12] Malhotra S. and Malhotra S., Analysis and tabular comparison of popular SDLC models, International Journal of Advances in

Computing and Information Technology, 1(3),2012
[13] Mandal A., BRIDGE: A Model for Modern Software Development Process to Cater the Present Software Crisis, Proc. IEEE Int’l

Conf. Advance Computing Conference, pp. 494-500, 2009. Also available at IEEEXplore with DOI: 10.1109/ IADCC.2009.4809259
[14] Molokken-Ostvold J. and Jorgensen M., A comparison of software project overruns - flexible versus sequential development models,

IEEE Transactions on Software Engineering, 31(9), pp. 754-766, 2005.
[15] Pfleeger S. L. and Atlee J. M., Software Engineering: Theory and Practice, Pearson, 2011.
[16] Pressman R. S., Software Engineering: A Practitioner’s Approach, MaGrawHill Publications, 2005.
[17] Rlewallen, Software Development Life Cycle Models, 2005, http://codebeter.com.
[18] Ruparelia N., Software Development Lifecycle Models, ACM SIGSOFT Software Engineering Notes, 35(3), pp. 8-13, 2010.
[19] Sasankar B. A. and Chavan V., Survey of Software Life Cycle Models by Various Documented Standards, International Journal of

Computer Science and Technology, 2(4), 2011.

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 201

http://codebeter.com/�

[20] Sharad Chandak S., Rangarajan V., Flexibility in Software Development Methodologies: Needs and Benefits (Executive
Summary), http://www.cognizant.com/InsightsWhitepapers/Flexibility-in-Software-Development-Methodologies-Needs-and-
Benefits.pdf

[21] Sommerville I., Software Engineering, Pearson Education, 8th

[22] Taya S. and Gupta S., Comparative Analysis of Software Development Life Cycle Models, International Journal of Computer Science
and Technology, 2(4), 2011.

 Edition, 2009.

[23] Walker W. Royce. Managing the development of large software systems: concepts and techniques, Proc. IEEE WESTCON, Los
Angeles (August 1970) Reprinted in the Proceedings of the Ninth International Conference on Software Engineering, pp.328-338,
1987.

Ardhendu Mandal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 03 Mar 2014 202

http://www.cognizant.com/InsightsWhitepapers/Flexibility-in-Software-Development-Methodologies-Needs-and-Benefits.pdf�
http://www.cognizant.com/InsightsWhitepapers/Flexibility-in-Software-Development-Methodologies-Needs-and-Benefits.pdf�

	A Comparative Analysis of BRIDGE and Some Other Well Known Software Development Life Cycle Models
	Abstract
	Keywords
	I. INTRODUCTION
	II. SOFTWARE DEVELOPMENT APPROACH, PROCESS AND PROCESS MODEL
	III. DIFFERENT WELL KNOWN SDLC PROCESS MODELS
	IV. BRIDGE PROCESS MODEL IN A NUTSHELL
	V. PARAMETER SELECTION FOR COMPARATIVE ANALYSIS
	VI. COMPARATIVE ANALYSIS
	VII. CONCLUSION
	VIII. FUTURE WORK
	REFERENCES

