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Abstract— Now a days mining of high utility itemsets especially from the big transactional databases is 
required task to process many day to day operations in quick time. There are many methods presented 
for mining the high utility itemsets from large transactional datasets are subjected to some serious 
limitations such as performance of this methods needs to be investigated in low memory based systems for 
mining high utility itemsets from large transactional datasets and hence needs to address further as well.  
Another limitation is these proposed methods cannot overcome the screenings as well as overhead of null 
transactions; hence, performance degrades drastically. During this paper, we are presenting the new 
approach to overcome these limitations. We presented distributed programming model for mining 
business-oriented transactional datasets by using an improved MapReduce framework on Hadoop, which 
overcomes single processor and main memory-based computing, but also unexpectedly highly scalable in 
terms of increasing database size. We have used this approach with existing UP-Growth and UP-Growth+ 
with aim of improving their performances further. In experimental studies we will compare the 
performances of existing algorithms UP-Growth and UP-Growth+ against the improve UP-Growth and 
UP-Growth+ with Hadoop. 
Keywords- Dataset Mining, Hadoop, Itemsets, MapReduce Framework, Transactional Dataset, UP-Growth, 
UP-Growth+. 

I.  INTRODUCTION  
Association rules mining (ARM) [1] is one of the most widely used techniques in data mining and 

knowledge discovery and has tremendous applications like business, science and other domains. Make the 
decisions about marketing activities such as, e.g., promotional pricing or product placements. A high utility 
itemset is defined as: A group of items in a transaction database is called itemset. There are two aspects in a 
transaction database:      First one is itemset in a single transaction is called internal utility and second one is 
itemset in different transaction database is called external utility. The multiplication of external utility by the 
internal utility is the transaction utility of an itemset. By transaction utility, transaction weight utilizations 
(TWU) can be found. A utility is a high utility itemset only if its utility is not less than a user specified minimum 
support threshold utility value; otherwise itemset is treated as low utility itemset. 
     To generate these high utility itemsets mining recently in  2010, UP - Growth (Utility Pattern Growth) 
algorithm [2] was proposed by Vincent S. Tseng et al. for discovering high utility itemsets and a tree based data 
structure called UP - Tree (Utility Pattern tree) which efficiently maintains the information of transaction 
database related to the utility  patterns. Four strategies (DGU, DGN, DLU, and DLN) used for efficient 
construction of UP - Tree and the processing in UP - Growth [11]. By applying these strategies, can not only 
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efficiently decrease the estimated utilities of the potential high utility itemsets (PHUI) but also effectively 
reduce the number of candidates. But more execution time for phase II (identify local utility itemsets) and I/O 
cost is taken by this algorithm. 
      Existing studies applied overestimated methods to facilitate the performance of utility mining. In these 
methods, potential high utility itemsets (PHUIs) are found first, and then an additional database scan is 
performed for identifying their utilities. However,  a huge set of PHUIs are generated and their mining 
performance is degraded consequently by existing methods . When databases contain many long transactions or 
low thresholds are set, the situation may become worse. A challenging problem to the mining performance is the 
huge number of PHUIs since more the  PHUIs the algorithm generates, the higher processing time it consumes. 
      To provide the efficient solution to mine the large transactional datasets, recently improved methods 
presented in [1]. In [1], authors presented propose two novel algorithms as well as a compact data structure for 
efficiently discovering high utility itemsets from transactional databases. Experimental results show that UP-
Growth and UP-Growth+ outperform other algorithms substantially in terms of execution time. But these 
algorithms further needs to be extend so that system with less memory will also able to handle large datasets 
efficiently. The algorithms presented in [1] are practically implemented with memory 3.5 GB, but if memory 
size is 2 GB or below, the performance will again degrade in case of time. In this project we are presenting new 
approach which is extending these algorithms to overcome the limitations using the MapReduce framework on 
Hadoop. 

II. LITERATURE SURVEY 
R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” [3] as they discussed a well-known 
algorithms for mining association rules is Apriori, which is the pioneer for efficiently mining association rules 
from large databases. 
J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” [4] as they discussed 
Pattern growth-based association rule mining algorithms [4], such as FP-Growth [4] were afterward proposed. It 
is widely recognized that FP-Growth achieves a better performance than Apriori-based algorithms since it finds 
frequent itemsets without generating any candidate itemset and scans database just twice. 
Cai et al. and Tao et al. first proposed the concept of weighted items and weighted association rules [5]. 
However, since the framework of weighted association rules does not have downward closure property, mining 
performance cannot be improved. To address this problem, Tao et al. proposed the concept of weighted 
downward closure property [12]. By using transaction weight, weighted support can not only reflect the 
importance of an itemset but also maintain the downward closure property during the mining process. 
Liu et al. proposed an algorithm named Two- Phase [8] which is mainly composed of two mining phases. In 
phase I, it employs an Apriori-based level-wise method to enumerate HTWUIs. Candidate itemsets with length 
k are generated from length k-1 HTWUIs, and their TWUs are computed by scanning the database once in each 
pass. After the above steps, the complete set of HTWUIs is collected in phase I. In phase II, HTWUIs that are 
high utility itemsets are identified with an additional database scan.  
Li et al. [7] proposed an isolated items discarding strategy (IIDS) to reduce the number of candidates. By 
pruning isolated items during level-wise search, the number of candidate itemsets for HTWUIs in phase I can be 
reduced. However, this algorithm still scans database for several times and uses a candidate generation-and-test 
scheme to find high utility itemsets. 
Ahmed et al. [13] proposed a tree-based algorithm, named IHUP. A tree based structure called IHUP-Tree is 
used to maintain the information about itemsets and their utilities. Each node of an IHUP-Tree consists of an 
item name, a TWU value and a support count. IHUP algorithm has three steps: 1) construction of IHUP-Tree, 2) 
generation of HTWUIs, and 3) identification of high utility itemsets. In step 1, items in transactions are 
rearranged in a fixed order such as lexicographic order, support descending order or TWU descending order. 
Then the rearranged transactions are inserted into an IHUP-Tree. 

III. PROBLEM STATEMENT 
   In the literature we have studied the different methods proposed for high utility mining from large 

datasets. But all this methods frequently generate a huge set of PHUIs and their mining performance is degraded 
consequently. Further in case of long transactions in dataset or low thresholds are set, then this condition may 
become worst. The huge number of PHUIs forms a challenging problem to the mining performance since the 
more PHUIs the algorithm generates, the higher processing time it consumes. Thus to overcome this challenges 
the efficient algorithms presented recently in [1]. These methods in [1] outperform the state-of-the-art 
algorithms almost in all cases on both real and synthetic data set. However this approach in [1] is still needs to 
be improved in case of less memory based systems.  
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These methods are further needs to be improved over their limitations presented below:  
- Performance of this methods needs to be investigated in low memory based systems for mining high 

utility itemsets from large transactional datasets and hence needs to address further as well.  
- These proposed methods cannot overcome the screenings as well as overhead of null transactions; 

hence, performance degrades drastically.  
IV. PROPOSED SOLUTION 

The recently methods presented for mining the high utility itemsets from large transactional datasets are 
subjected to some serious limitations such as performance of this methods needs to be investigated in low 
memory based systems for mining high utility itemsets from large transactional datasets and hence needs to 
address further as well.  Another limitation is these proposed methods cannot overcome the screenings as well 
as overhead of null transactions; hence, performance degrades drastically. In this project we are presenting the 
new approach to overcome these limitations. We presented distributed programming model for mining business-
oriented transactional datasets by using an improved MapReduce framework on Hadoop, which overcomes not 
only the single processor and main memory-based computing, but also highly scalable in terms of increasing 
database size. We have used this approach with existing UP-Growth and UP-Growth+ with aim of improving 
their performances further. In experimental studies we will compare the performances of existing algorithms 
UP-Growth and UP-Growth+ against the improve UP-Growth and UP-Growth+ with Hadoop. Also In this 
paper, UP-Tree (Utility Pattern Tree) is adopted, which scans database only twice to obtain candidate items and 
manage them in an efficient data structured way. Applying UP-Tree to the UP-Growth takes more execution 
time. Hence this paper presents modified algorithm named as IUPG(Improved UP-Growth) aiming to reduce the 
execution time by effectively identifying high utility itemsets.  

 
Figure 1: Flowchart of Performance comparison 

A. The MapReduce Framework for Handling Big Datasets 
Google's MapReduce [22] was first proposed in 2004 for massive parallel data analysis in shared-nothing 

clusters. Literature [23] evaluates the performance in Hadoop/HBase for Electroencephalogram (EEG) data and 
saw promising performance regarding latency and throughput. Karim et al. [24] proposed a Hadoop/MapReduce 
framework for mining maximal contiguous frequent patterns (which was first introduced at literature in 
RDBMS/single processor-main memory based computing) from the large DNA sequence dataset and showed 
outstanding performance in terms of throughput and scalability [21]

B.  Hadoop Overview: 
.  

When data sets go beyond a single storage capacity, then distributing them to multiple independent 
computers becomes important. Trans-computer network storage file management system is called A distributed 
file system is Trans-computer network storage file management system . A typical Hadoop distributed file 
system contains thousands of servers, where each server stores partial data of file system. 
C.  MapReduce Overview: 

In distributed data storage, when parallel processing the data, a lot should be considered, such as 
synchronization, concurrency, load balancing and other details of the underlying system which makes the simple 
calculation become very complex. MapReduce programming model was proposed in 2004 by the Google, which 
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is used in processing and generating large data sets implementation. Such a  framework solves many problems, 
such as job scheduling,data distribution,  fault tolerance, machine to machine communication, etc. MapReduce 
is applied in Google's Web search. Programmers are needed to write many programs for the specific purpose to 
deal with the massive data distributed and stored in the server cluster, such as crawled documents, web request 
logs, etc., which gives the results of different data, such as  web document, inverted indices, different views, 
worms collected the number of pages for each host a summary of a given date within the collection of the most 
common queries and so on. 

We use Two algorithms, named utility pattern growth (UPGrowth) and UP-Growth+, and a compact 
tree structure, called utility pattern tree (UP-Tree), for high utility itemsets discovery and to maintain important 
information related to utility patterns within databases. 
UP-Growth algorithm 
Input: UP-Tree 𝑇𝑥, Header Table 𝐻𝑇𝑥, minimum utility threshold 𝑡, Item set  𝐼 = {𝑖1, 𝑖2, . . , 𝑖𝑘}. 
Process: 

1. For each entry 𝑖𝑘 in 𝐻𝑇𝑥 do 
2. Trace links of each item. And calculate sum of node utility𝑛𝑢𝑠𝑢𝑚. 
3. If 𝑛𝑢𝑠𝑢𝑚 ≥ t 
4. Generate Potential High Utility Itemset (PHUI) 

𝑌 = 𝑋 ∪  𝑖𝑘  
5. Put Potential Utility of 𝑖𝑘 as approximated utility of 𝑌 
6. Construct Conditional Pattern Based  𝐻𝑇𝑌. 
7. Put local promising items into𝐻𝑇𝑌. 
8. Apply Discarding Local Unpromising (DLU) to minimize path utilities of paths. 
9. Apply DLU with 𝐼𝑛𝑠𝑒𝑟𝑡_𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑_𝑃𝑎𝑡ℎ to insert path into𝑇𝑌. 
10. If  𝑇𝑌 ≠  ∅ then call to UP-Growth. 
11. End if 
12. End for. 
Output: All PHUI’s in 𝑇𝑥 

UP-Growth+ algorithm 
 In UP-Growth, minimum item utility table is used to reduce the overestimated utilities. In UP-Growth+ 

algorithm we replace Discarding Local Unpromising (DLU) with Discarding Node Utility (DNU), DLN is 
replace with Decreasing local Node utilities for the nodes of local UP-Tree (DNN) and Insert_Recognized_Path 
is replace by 〖Insert_Recognized_Path〗_miu When a path is retrieved, minimal node utility of each node in the 
path is also retrieved in the data mining process . Thus, the minimum item utility can be simply replaced with 
minimal node utility as follows 
Assume, 𝑝 is the path in item {𝑖𝑚} − 𝐶𝑃𝐵 and 𝑈𝐼{𝑖𝑚} −  𝐶𝑃𝐵 is the set of unpromising items in{𝑖𝑚} − 𝐶𝑃𝐵. The 
path utility of 𝑝 in{𝑖𝑚} − 𝐶𝑃𝐵, i.e.,𝑝𝑢(𝑝, {𝑖𝑚} − 𝐶𝑃𝐵), {𝑖𝑚} − 𝐶𝑃𝐵, is recalculated as: 

𝑝𝑢(𝑝, {𝑖𝑚} − 𝐶𝑃𝐵) =  𝑝. {𝑖𝑚}.𝑛𝑢 − � 𝑚𝑖𝑢(𝑖) × 𝑝. 𝑐𝑜𝑢𝑛𝑡
∀𝑖∈𝑈𝐼{𝑖𝑚}−𝐶𝑃𝐵∧𝑖⊆𝑝

 

Where 𝑝. 𝑐𝑜𝑢𝑛𝑡 is the support count of 𝑝 in {𝑖𝑚} − 𝐶𝑃𝐵. 
Assume, a reorganized path  𝑝 = < 𝑁′𝑖1 ,𝑁′𝑖2 , … ,𝑁′𝑖𝑚 > in  {𝑖𝑚} − 𝐶𝑃𝐵 inserted into < 𝑁′𝑖1 ,𝑁′𝑖2 , … ,𝑁′𝑖𝑚 > 
path in {𝑖𝑚} − 𝑡𝑟𝑒𝑒. Thus node utility of item node is recalculated as: 

𝑁𝑖𝑘.𝑛𝑢𝑛𝑒𝑤 =  𝑁𝑖𝑘 .𝑛𝑢𝑜𝑙𝑑 +  𝑝𝑢(𝑝, {𝑖𝑚} − 𝐶𝑃𝐵) −  � 𝑚𝑖𝑢�𝑖𝑗� × 𝑝. 𝑐𝑜𝑢𝑛𝑡
𝑚′

𝑗=𝑘+1

 

Where 𝑁𝑖𝑘.𝑛𝑢𝑜𝑙𝑑 is the node utility of 𝑁𝑖𝑘  in {𝑖𝑚} − 𝑡𝑟𝑒𝑒before adding 𝑝. 
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V. PRACTICAL RESULT AND ENVIRONMENT 
     In this section, we introduce practical environment and results. 
A.  Input Dataset 

Following table 1 sows the dataset used for implementation. We compare both dataset to find accuracy by 
calculating precision and recall. 

NO. Dataset 
Name 

Dataset 
Type 

1. Accident Dense 
2. Cheese Dense 

Table 1: Experimental Input Dataset. 

B.  Hardware and Software Used 
Hardware Requirement: 

Processor                               - Pentium –IV 
Speed                   -  1.1 Ghz 

   RAM                   - 256 MB(min) 
   Hard Disk                               -  20 GB 
   Key Board                               -  Standard Windows Keyboard 

 Monitor                  - SVGA 
Software Requirement: 
   Operating System    - Windows XP/7/8 
   Programming Language                 - Java 
   Tool                                 - Eclipse, Hadoop 
C. Metrics Computed 
Results are computed as referred in [1] and performance is compared using hadoop. 
D. Results of Practical Work 
Practical work done is as shown in figure given below. 
Following figure shows output of dataset transactions implementation. 

 
Figure 2: Output screen 1. 

Following figure 3 shows the output screen for transaction weighted utility and transaction utility 
implementation. 
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Figure 3: Output Screen 2. 

VI. WORK DONE 
Use either SI (MKS) or CGS as primary units. (SI units are strongly encouraged.) English units can 

also be used as secondary units (in parentheses). This also applies to papers in data storage. For example, write 
“15 Gb/cm2 (100 Gb/in2).” there could be an exception when English units are used as identifiers in trade, such 
as “3½-in disk drive.” Avoid combining SI and CGS units, such as magnetic field in oersteds. Equations do not 
balance dimensionally as, this often leads to confusion. If you must use mixed units,  the units for each quantity 
in an equation should be clearly stated. 
     The SI unit for magnetic field strength H is A/m. However, if you want to use units of T, either refer to 
magnetic flux density B or magnetic field strength symbolized as µ0H. Use the center dot to separate compound 
units, e.g., “A•m2.” 

VII. CONCLUSION 
In this paper we have presented new enhanced framework of two recently presented algorithms namely 

UP-Growth and UP-Growth+ with aim of improving the processing time performance and mining performance 
under the less system memory environment as well.  We have used the concept of Hadoop with MapReduce 
Framework along with these two algorithms. The proposed system block diagram is depicted in this paper with 
the details of using Hadoop Framework. In the results section, we presented the work done so far over this 
proposed approach with the datasets used. In the future completely evaluate this proposed architecture and 
compare its performance against existing methods in order to claim the effectiveness and efficiency of this 
proposed network. 
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