
Classification of Escherichia Coli Bacteria
using Meta-Cognitive Neural Network

Padma.S
 Asst Professor Dept of Computer Science

 K.S.Rangasamy College of Arts and Science
Tiruchengode, India

padmacde@gmail.com

Arun Kumar.M
Asst Professor, Dept of ECE

Bannari Amman Institute of Technology
Sathyamangalam, India

Abstract— The classification of data using machine learning involves different challenging tasks which
depend on the learning method, selection of neurons, selection of dataset, selection of algorithm etc. This
paper deals with classifying Escherichia Coli bacteria proteins from the amino acid sequence using Meta-
cognitive learning. Different machine learning techniques are implied on the imbalanced dataset of E-
Coli with 10 cross-fold validations to prove the performance of Meta-cognitive Neural Network (McNN)
.McNN is capable of learning what –to-learn, when-to-learn and how-to-learn. Extreme Learning
Machine (ELM) a batch learning algorithm, Self – adaptive Resource Allocation Network (SRAN) a
sequential learning algorithm and Meta- cognitive Neural Network (McNN) which employs meta-
cognition in sequential learning are applied for experimental study. This paper shows that classification
of McNN performs well with respect to other machine learning algorithms.
Keywords- ELM, SRAN, McNN, Meta-Cognitive

I. INTRODUCTION
Data mining deals with two different types of learning supervised and unsupervised learning. Supervised

learning is involved for classification as it is used to model different input and output relationships. The learning
methods can be given to any kind of data. Likewise people, machine can also be trained for different learning
methods. Learning may be rather sequential or batch. In sequential learning structure the samples that require
training arrives one-by-one and after learning they are discarded which results in less memory and computational
time. In addition the sequential algorithms automatically determine the minimal architecture that can accurately
approximate the true decision function described by a stream of training samples. Radial basis function networks
have been extensively used in a sequential learning framework due to its universal approximation ability and
simplicity of architecture. [5]

A well known paradigm in fast learning neural network is extreme learning machine (ELM) [10]. It is a batch
learning algorithm for a single-hidden layer feed forward neural network.

ELM chooses input weights randomly and analytically determines the output weights using minimum norm
least-squares. Three activation functions are used in ELM namely Unipolar, Bipolar and Gaussian. The efficiency
of this machine learning algorithm changes from one execution to the other, which can be averaged to a better
efficiency. In case of sparse and imbalance data sets, the random selection of input weights in the ELM and its
variants affects the performance significantly [2,11,12,25].

Another Sequential learning algorithm is Self-adaptive Resource Allocation Network (SRAN). [9] in which
significant samples are selected using misclassification errors and hinge loss function. It has been shown in
[9,13] that the selection of appropriate samples by removing repetitive samples helps in achieving better
generalization performance. The sample neurons are reserved for future use. Pruning strategy is executed to
improve the performance of classification.

Recent studies in human learning suggested that the learning process is effective when the learners adopt self-
regulation in learning process using meta-cognition. The term meta-cognition is defined as ‘one’s knowledge
concerning one’s own cognitive processes or anything related to them’. In particular the learner should control the
learning process, by planning and selecting learning strategies and monitor their progress by analyzing the
effectiveness of the proposed learning strategies. When necessary, these strategies should be adapted
appropriately. Meta- cognition present in human-being provides a means to address what-to-learn, when-to-learn
and how-to-learn, i.e., the ability to identify the specific piece of required knowledge, judge when to start and
stop learning by emphasizing best learning strategy. Meta-cognitive Neural Network classifier is capable of
deciding what-to-learn, when-to-learn and how-to-learn the decision functions from the training

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 141

data[15][16][17][18][19]. Meta-cognitive Neural Network (McNN) classifier which employs human-like meta-
cognition to regulate the sequential learning process. [20][21][22][23][24]In this paper section II describes the
methods and the dataset, section III discusses the experimental results and section IV concludes the paper.

II. METHODS
A. Extreme Learning Machine
Descripition of Extreme learning machine (ELM)

For N arbitrary distinct samples (,)i ix t , where []1 2, ,..., T m
i i i inx x x x R= ∈

, and []1 2, ,..., T m
i i i int t t t R= ∈

,

standard SLFNs with N hidden nodes and activation function ()g x are mathematically modeled as

1 1
() (.) ,

N N

i i j i i i j i j
i i

g x g w x b oβ β
= =

= + =∑ ∑

1, 2,..., ,j N= (1)

where []1 2, ,..., T
i i i inw w w w=

 is the weight vector connecting the ith hidden node and the input nodes,

[]1 2, ,..., T
i i i inβ β β β=

 is the weight vector connecting the ith hidden node and the output nodes, and bi is

the threshold of the ith hidden node.
.i jw x

 denotes the inner product of wi and xj. The standard SLFNs with
N hidden nodes with activation function ()g x can approximate these N samples with zero error means by

1 0,N
j j jo t= − =∑

 i.e., there exist iβ , wi and bi such that

1
(.) , 1, 2,..., ,

N

i i i j i j
i

g w x b o j Nβ
=

+ = =∑

 (2)

The above equations can be rewritten compactly as
,H Tβ = (3)

Where 1 1 1(,..., , ,..., , ,...,)NN NH w w b b x x

1 1 1 1

1 1

(.) ... (.)

. .
(.) ... (.)

N N

N NN N N N

g w x b g w x b

g w x b g w x b
×

+ +

=
 + +

,

 (4)

1

.

T

T
N N m

β
β

β
×

=

 and
1

.

T

T
N N m

t
T

t
×

 =

 (5)

As named in Huang et al. [10,12], H is called the hidden layer output matrix of the neural network; the ith

column of H is the ith hidden node output with respect to inputs 1 2, ,..., Nx x x . In the case of learning an
arbitrary function with zero training error, Baum had presented several constructions of SLFNs with sufficient
hidden neurons. However, in practice, the number of hidden neurons required to achieve a proper generalization
performance on novel patterns is much less. And the resulting training error might not approach to zero but can
be minimized by solving the following equation:

1 1(,..., , ,...,)N NH w w b b Tβ −

1 1(,..., , ,...,)min
i i

N N
w b

H w w b b T
β

β= −

 (6)

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 142

When H is unknown the gradient-based learning algorithms are generally used to search the minimum of
H Tβ −

.The above problem is well established and known as a linear system optimization problem. Its
unique least-squares solution with minimum norm is given by:

†ˆ H Tβ = (7)

where
†H is the Moore-Penrose generalized inverse of matrix H.

Algorithm ELM: Given a training set {(,) | , , 1,.., }n m
i i i ix t x R t R i Nℵ= ∈ ∈ = , activation function

g(x),and hidden node number N ,

Step 1: Randomly assign input weight wi and bias bi , 1,..,i N=

.
Step2:Calculate the hidden layer output matrix H.
Step 3: Calculate β the output weight

B. Self-Adaptive Resource Allocation Network
Online/sequential learning for a multi-category classification problem can be stated in the following manner.

The observation data arrives one-by-one and one at a time. After learning, the sample is discarded from the

sequence. Suppose we have the observation data {(x1,y1),(x2,y2),... ,(xt,yt),...}, where
m

tx ∈ℜ is an m-

dimensional features of observation t and
m

ty ∈ℜ is its coded class label. Here, n represents the total number
of classes. For notational convenience, the subscript t is left out in all further discussion. If the feature
observation x is assigned to the class label c, then cth element of y = [y1,... ,yc,... ,yn]T is 1 and other elements
are -1.

1
1 , 1,2,..,j

if j c
y

otherwise j n
 ==

=
− = (8)

The observation data are random variables and the observation x provides some useful information on
probability distribution over the observation data to predict the corresponding class label with certain accuracy.
Hence, the classification problem is to predict the coded class label y of a new observation x. This requires us to
estimate a functional relationship between the coded class label and feature space from sequential training data.
In the SRAN classifier, a radial basis function network is used as a building block. The SRAN network
approximates the functional relationship between the feature space and the coded class label.

The output of the SRAN classifier 1ˆ ˆ ˆ([,...,])T
ny y y= with K hidden neurons has the following form:

1

ˆ , 1, 2,..,
K

j
i ij h

j
y y i nα

=

= =∑
 (9)

2

2exp()
()

I
jj

h I
j

x
y

µ

σ

−
= −

 (10)

where
I
jµ is the jth neuron center corresponding to the ith class,

I
jσ

 is the width of the jth neuron and ijα

is the weight connecting the ith output neuron and jth Gaussian neuron.
The predicted class label cc for the new training sample is given by

1,2,..,

ˆ ˆarg max i
i n

c y
∈

=
 (11)

In other sequential learning algorithms, the error (e) is usually the difference between the actual output and

predicted output ˆ()y y− , which is used in the mean square error loss function. For classification problems, the
above definition of error restricts the outputs of the neural classifier between 7-1. In [13,14], it is shown that the
classifier developed using a hinge loss function can estimate the posterior probability more accurately than the
mean square error loss function. Hence, in our formulation, we use a hinge loss function to calculate the error e
= [e1,e2,... ,en]T and is given below

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 143

ˆ ˆ 1

0 , 1,2,..,
i i i i

i

y y if y y
e

otherwise i n

 − <=
= (12)

With this hinge loss function, the network output can grow beyond 1± and prevent the saturation problems
in the learning process. The truncated outputs of the classifier model approximate the posterior probability
accurately. The truncated output is defined as

,ˆ ˆ() min(max(1),1), 1, 2,...,i iT y y i n= − =
 (13)

Since, the target vectors are coded as - 1 or 1, the posterior probability of observation vector x belonging to
class c is

ˆ() 1ˆ (|)
2

T yp c x +
=

 (14)
In the setting of standard online/sequential learning, the training sample arrives one at a time and the

network adapts its parameters based on the difference in knowledge between the network and the current
sample. When new sample (xt) is arrived to the network, based on the sample error (e), the sample is either used
for network training (growing/learning) immediately, pushed to the rear end of the stack for learning in future,
or deleted from the data set. The detailed description of SRAN is explained in [8].
Algorithm for SRAN

Input : Present the training data one-by-one to the network from data stream.
Output : Decision function that estimates the relationship between feature space and class label.
START
Initialization : Assign the first sample as the first neuron (K = 1).
Start learning for samples t = 2,3,...
DO
Compute significance of the sample to the network:

Compute the network output ˆty .

Find the maximum absolute hinge error E and predicted class label ĉ .
Delete Redundant samples:

IF 0.05E ≤ THEN
Delete the sample from the sequence without learning.
ENDIF

IF
ˆ ac c AND E η≠ ≥

THEN
Add a neuron to the network (K = K +1).
Choose the parameters of the network
Update the control adding parameters

ELSEIF 1ˆc c AND E η== ≥ THEN
Update the parameters of the network using EKF
Update the control parameters
ELSE
The current sample xt, yt

They can be later used to fine-tune the network parameters.
ENDIF

 is pushed to the rear end of the sample stack to be used in future.

ENDDO
C. Meta-cognitive Neural Network

In this section, we present the architecture of the Meta cognitive Neural Network (McNN) classifier and its
working principles. McNN architecture is developed based on the Nelson and Narens meta-cognition model.
The information flow from the cognitive component to meta-cognitive component is considered monitoring,
while the information flow in the reverse direction is considered control. McNN has two components namely the

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 144

cognitive component and the meta-cognitive component. The cognitive component of McNN is a three layered
feed forward radial basis function network with Gaussian activation function in the hidden layer. The meta-
cognitive component contains copy of the cognitive component. When a new training sample arrives, the meta-
cognitive components of McNN predicts the class label and estimate the knowledge present in the new training
sample with respect to the cognitive component. Based on this information, the meta-cognitive component
selects a suitable learning strategy, for the current sample. Thereby, addressing the three fundamental issues in
learning process: (a) what-to-learn, (b) when-to-learn and (c) how-to-learn [15-24].

a. Cognitive component of McNN
The cognitive component of McNN is a three layered feed forward radial basis function network. The input

layer maps all features to the hidden layer without doing any transformation, the hidden layer employs Gaussian
activation function and the output layer uses a linear activation function.

Without loss of generality, we assume that the meta-cognitive learning algorithm builds K Gaussian neurons
from i-1 training samples. For given training sample iX , the predicted

output 1([,..., ,...,])
i i i i

T
j nY Y Y Y

∧ ∧ ∧ ∧

= of McNN classifier with K hidden neurons is

0
1

()
i k

i
j j jk k

k
Y Xα α φ
∧

=

= +∑ , j = 1,2,..,n (15)

where 0jα is the bias to the jkα output neuron, ()i
k Xφ is the weight connecting the kth hidden neuron to

the jth ()i
k Xφ output neuron and is the response of the kth hidden neuron to the input xi

2

2() exp()
()

i l
i k

k l
k

XX µφ
σ
−

= −

 is given by

 (16)

where l
kµ is the center and l

kσ is the width of the kth

 hidden neuron. Here, the superscript l represent the
class that hidden neuron belongs to.

b. Meta-cognitive component of McNN

The meta-cognitive component uses estimated class label c
∧

, maximum hinge error (E), posterior probability

as confidence measure ((|))ip j x
∧

 and spherical potential based class-wise [20] significance as a measure of
knowledge in the new training sample. Using these measures, the meta-cognitive component devices various
learning strategies. First, we describe these measures in detail.

Estimated class label (c
∧

): Using the predicted output ()
i

y
∧

, the estimated class label (c
∧

) can be obtained
as

max
1,2,..,arg

i

j n jc y
∧ ∧

∈= (17)

Maximum hinge error (E): The objective of the classifier is to minimize the error between the predicted

output ()
i

y
∧

 and actual output (yi

1([,.., ,..,])T
j ne e e e=

). In classification problems, it has been shown that the classifier developed
using hinge loss function estimates the posterior probability more accurately than the classifier developed using
mean square error function . Hence, in McNN, we use the hinge loss error defined as

{ 0 1,

,
1, 2,..,

i i

j j
i i

j j

if y y
j otherwise

y y
e j n

∧

∧

>

−
= = (18)

The maximum absolute hinge error (E) is given by
max

1,2,..,j n jE e∈= (19)

Confidence of classifier: The confidence level of classification or predicted posterior probability is given as

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 145

min(1,max(1,)) 1
(|)

2

i
i

ji y
p c x

∧
∧ − +

= (20)

Class-wise significance ()cψ : In general, the input feature (x) is mapped on to a hyper-dimensional

spherical feature space S using K Gaussian neurons, i.e., x φ→ . Therefore, all ()xφ lie on a hyper-
dimensional sphere. The knowledge or spherical potential of any sample in original space is expressed as a
squared distance from the hyper-dimensional mapping centered at 0φ .

In McNN, the center (µ) and width (σ) of the Gaussian neurons describe the feature space . Let the

center of the K-dimensional feature space be 0 1

1() ()k
kkk

φ φ µ
=

= ∑ . The knowledge present in the new data xi

0φ

can be expressed as the potential of the data in the original space, which is squared distance from the K-
dimensional feature space to the center .The potential (ψ) is given as

2
0()ixψ φ φ= − (21)

Using the steps , the above equation can be expressed as

21
, 1

2 1(,) (,) (,)
k

ki i i l l l
k k rk

k r
x x x

k k
ψ φ φ µ φ µ µ

=
=

= − +∑ ∑ (22)

From, the above equation, we can see that for Gaussian function the first term ((,))i ix xφ and last

term 2
, 1

1(() (,)
k

l l
k r

k rk
φ µ µ

=
∑ are constants. Since potential is a measure of novelty, these constants may be

discarded and the potential can be reduced to

1

2 (,)
k

i l
k

k
x

k
ψ φ µ

=

≈ − ∑ (23)

Since we are addressing classification problems, the class-wise distribution plays a vital role and it will
influence the performance of the classifier significantly. Hence, we use the measure of the spherical potential of
the new training sample xi belonging to class c with respect to the neurons associated to same class (i.e. l=c). Let
Kc

()cψ
 be the number of neurons associated with the class c, then class-wise spherical potential or class-wise

significance is defined as

, 1

1 (,)
cK

i c
c kc

k r
x

k
ψ φ µ

=

= ∑ (24)

The spherical potential directly indicates the knowledge contained in the sample, a higher value of spherical
potential (close to one) indicates that the sample is similar to the existing knowledge in the cognitive component
and a smaller value of spherical potential (close to zero) indicates that the sample is novel.
McNN algorithm can be summarized as below:

1. For each new training sample input ()iX compute the cognitive component output ()y
∧

.

2. The meta-cognitive component finds the estimated class label ()c
∧

, maximum hinge error (E), confidence

((|))ip c X
∧

 and class wise significance cψ measures for the new training sample ()iX .

3. The meta-cognitive component selects one of the following strategies based on the above calculated
measures.

(a) Sample delete strategy: If ((|))i
dp c X β

∧

≥ AND c c
∧

== then delete the sample from the sequence
without learning.

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 146

(b) Neuron growth strategy: If c c
∧

≠ AND ()i
c cXψ β≤ AND aE β≥ , then allocate a new hidden

neuron in the cognitive component and its parameters are calculated based on the intra- and inter-class nearest
neurons distances . Also, update the self-adaptive meta-cognitive addition threshold and increase the
dimensionality of P.

(c) Parameters update strategy: If c c
∧

== AND uE β≥ , then update the cognitive component parameters
using EKF. Also, update the self-adaptive meta-cognitive update threshold
(d) Sample reserve strategy: When the new sample does not satisfy deletion, growth and update criterion, then
push the sample to the reserve to be used later for learning.

4. The cognitive component executes the above selected strategy.
5. Continue steps 1-4 until there are no more samples in the training data stream or number of samples

remains same in the reserve.
D. Dataset

a. E.coli Dataset
Performance of classification may get differ depending on the dataset. If the dataset is imbalanced it

results in the performance of the machine learning algorithm used.[2,25].The prokaryotic gram-negative
bacterium Escherichie Coli is an important component of the biosphere, it colonizes the lower gut of
animals and humans. The Escherichia Coli benchmark dataset has been submitted to the UCI Machine
Learning Data Repository. The dataset patterns are characterized by attributes calculated from the amino
acid sequences. Protein patterns in the E.coli dataset are classified to eight classes, it is a drastically
imbalanced dataset of 336 patterns. Protein patterns in this dataset are organized as follows: 143 patterns
of cytoplasm (cp), 77 of inner membrane without signal sequence (im), 52 of periplasm (pp), 35 of inner
membrane without uncleavable signal sequence (imU), 20 of outer membrane without lipoprotein (omL),
5 of outer membrane with lipoprotein (omL), 2 of inner membrane without lipoprotein (imL) and 2
patterns of inner membrane with cleavage signal sequence (imS). The class distribution is extremely
imbalanced, especially for imL and imS proteins.[1]

III. EXPERIMENTAL RESULTS
The performance evaluation of the ELM , SRAN and McNN classifier using real world classification

problems from UCI machine learning repository. The proposed methods have been implemented using
MATLAB. The statistical measures could be used to evaluate the performance of the proposed method.
a. Cross Validation

In this study, we used Cross Validation tests to evaluate the classifier robustness, this methodology is most
suitable to avoid biased results. Thus, the whole training set was divided into ten mutually exclusive and
approximately equal-sized subsets and for each subset used in test, the classifier was trained on the fusion of all
the other subsets. So, cross validation was run ten times for each classifier and the average value of the ten-cross
validations was calculated to estimate the overall classification accuracy.
b. Performance Measures :

Class-level performance is indicated by the percentage classification which tells us how many samples

belonging to a particular class have been correctly classified [9]. The percentage classification iη for class ci is

ii
i T

i

q
N

η =
 (25)

where iiq is the number of correctly classified samples and
T
iN is the number of samples for the class ci in

the testing data set. The global performance measure the average ()aη classification efficiency, is defined as

1

1 cn

a i
icn

η η
=

= ∑
 (26)

where nc is the total number of classes.

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 147

TABLE 1. TRAINING AND

Fold
No

 TESTING EFFICIENCIES OF 10 FOLDS.

ELM SRAN McNN
Tra
Eff

Tes
Eff

Tra
Eff

Tes
Eff

Tra
Eff

Tes
 Eff

1 86 81 90 88 93 96
2 85 84 91 87 93 90
3 84 85 87 85 93 86
4 86 87 91 93 92 93
5 83 84 90 89 93 92
6 86 85 90 85 94 86
7 87 80 91 85 93 85
8 85 83 91 93 91 93
9 84 83 90 90 91 90

10 86 82 90 84 93 85

Table 1. Discusses in detail the average training and testing efficiencies of ten cross fold validation. As
already discussed the dataset is divided into ten out of that 9 folds are considered for training and the
remaining one fold for testing. Every fold result is compared with ELM, SRAN and McNN and it shows
that the performance result of McNN is better when compared to ELM and SRAN.

Figure 1 Comparison of testing efficiences with algorithms. x-axis with its fold numbers and testing efficiencies in the y-axis.

Figure 2 Comparison of average training and testing efficiences with algorithms. x-axis with its effieciency values and algorithms used for
experiment in the y-axis.

The above figures fig 1 and fig 2 clearly explains the better performance of McNN. Both training and testing
efficiences comparison are shown which describes that McNN performs well when compared to SRAN. SRAN
performs well when compared to ELM.

IV. CONCLUSION
This paper concludes that McNN a sequential learning algorithm with the policy of when-to-learn, what-to-

learn and how-to-learn performs well in classifying an imbalanced dataset E-Coli. The learning strategy of the
classifier reduces the growth of neurons and hence improves the performance of classification which is represents
in the experimental results. The ten cross fold validation is used to improve results. Finally when compared to
batch learning algorithm ELM and sequential algorithm SRAN, McNN which is also a sequential algorithm
performs well.

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 148

REFERENCES
[1] Hafida Bouziane, Belhadri Messabih, and Abdallah Chouarfia, “Meta-Learning for Escherichia Coli Bacteria Patterns Classification”

Proceedings ICWIT 2012.
[2] Padma, S., Kumar, S.S. , Manavalan, R., “Performance analysis for classification in balanced and unbalanced data set”, Industrial and

Information Systems (ICIIS), 2011 6th IEEE International Conference on (2011) 300-304.
[3] J.C. Platt, “A resource allocation network for function interpolation”, Neural Computing. 3 (2) (1991) 213–225.
[4] L. Yingwei, N. Sundararajan, P. Saratchandran, “A sequential learning scheme for function approximation using minimal radial basis

function neural net-works”, Neural Comput. 9 (2) (1997) 461–478.
[5] L. Yan, N. Sundararajan, P. Saratchandran, “Analysis of minimal radial basis function network algorithm for real-time identification of

non-linear dynamic systems”, IEE Proc. Control Theory Appl. 147 (4) (2000) 476–484.
[6] G.-B. Huang, P. Saratchandran, N. Sundararajan, “An efficient sequential learning algorithm for growing and pruning RBF (GAP-

RBF) networks”, IEEE Trans. Syst. Man Cybern. Part B Cybern. 34 (6) (2004) 2284–2292.
[7] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, “A fast and accurate online sequential learning algorithm for

feedforward networks”, IEEE Trans. Neural Networks 17 (6) (2006) 1411–1423.
[8] S. Suresh, N. Sundararajan, P. Saratchandran, “A sequential multi-category classifier using radial basis function networks”,

Neurocomputing 71 (1) (2008) 1345–1358.
[9] S. Suresh, K. Dong, H.J. Kim, “A sequential learning algorithm for self-adaptive resource allocation network classifier”,

Neurocomputing 73 (16–18) (2010) 3012–3019.
[10] G. Huang, Q. Zhu, C. Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks”. in: IEEE

International Joint Conference on Neural Networks. Proceedings, vol. 2, 2004, pp. 985–990.
[11] S. Suresh, R.V. Babu, H.J. Kim, “No-reference image quality assessment using modified extreme learning machine classifier”, Appl.

Soft Comput. 9 (2) (2009) 541–552.
[12] G.-B. Huang, D. Wang, Y. Lana, “Extreme learning machines: a survey”, Int. J. Mach. Learn. Cybern. 2 (2) (2011) 107–122.
[13] S. Suresh, N. Sundararajan, P. Saratchandran, “Risk sensitive hinge loss functions for sparse multi-category classification problems”,

Inf. Sci. 178 (12) (2008) 2621-2638.
[14] T. Zhang, “Statistical behavior and consistency of classification methods based on convex risk minimization”, Ann. Stat. 32 (1) (2003)

56-85.
[15] R. Savitha, S. Suresh and H. J. Kim, "A Meta-cognitive Learning Algorithm for an Extreme Learning Machine Classifier," Cognitive

Computation (Accepted), 2013
[16] K. Subramanian, S. Suresh, N. Sundararajan, "A meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classification

problems”, IEEE Trans. on Fuzzy Systems, 2013.
[17] G. Sateesh Babu, S. Suresh, “Sequential projection based metacognitive learning in a Radial basis function network for classification

problems”, IEEE Trans, on Neural Networks and Learning Systems, 24(2), pp. 194-206, 2013.
[18] K. Subraminan, and S. Suresh, “Human action recognition using meta-cognitive neuro-fuzzy inference system”, International Journal

of Neural Systems, 22(6), 2012.
[19] K. Subraminan, and S. Suresh, “A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system”, Applied soft

computing, 12(11), 36703-3614, 2012.
[20] G. Sateesh Babu, and S. Suresh,” Meta-cognitive RBF networks and Its Projection based Learning Algorithm for Classification

problems”, Applied Soft Computing, 13(1), pp. 654-666, 2013.
[21] G. Sateesh Babu, and S. Suresh, “Parkinson's Disease Prediction using Gene Expression - A Projection based Learning Metacognitive

Neural Classifier Approach”, Expert System with Applications, 40(5), pp. 1519-1529, 2012.
[22] R. Savitha, S. Suresh, and N. Sundararajan, “Metacognitive learning algorithm for a fully complex-valued relaxation network”, Neural

Networks, 32, pp. 309-318, 2012.
[23] G. Sateesh Babu, and S. Suresh, “Meta-cognitive neural network for classification problems in a sequential learning framework”,

Neurocomputing, 81(1), pp. 86-96, 2012.
[24] R. Savitha, S. Suresh, and N. Sundararajan, “Meta-cognitive learning in a fully complex-valued radial basis function network”, Neural

Computation, 24(5), pp. 1297-1328, 2012.
[25] S.Padma. and J.Joshua Sam Paul “Novel Methods for Classification Using Machine Learning Concepts”, AET_ACS 2013 Delhi, 164-

167.

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 149

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6038084&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6038084�
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6038084&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6038084�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6027500�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6027500�

	I. Introduction
	II. METHODS
	A. Extreme Learning Machine
	B. Self-Adaptive Resource Allocation Network
	C. Meta-cognitive Neural Network
	D. Dataset

	III. Experimental Results
	IV. Conclusion

