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Abstract— The classification of data using machine learning involves different challenging tasks which 
depend on the learning method, selection of neurons, selection of dataset, selection of algorithm etc. This 
paper deals with classifying Escherichia Coli bacteria proteins from the amino acid sequence using Meta-
cognitive learning.  Different machine learning techniques are implied on the imbalanced dataset of E-
Coli with 10 cross-fold validations to prove the performance of Meta-cognitive Neural Network (McNN) 
.McNN is capable of learning what –to-learn, when-to-learn and how-to-learn. Extreme Learning 
Machine (ELM) a batch learning algorithm, Self – adaptive Resource Allocation Network (SRAN) a 
sequential learning algorithm and Meta- cognitive Neural Network (McNN) which employs meta-
cognition in sequential learning are applied for experimental study.  This paper shows that classification 
of McNN performs well with respect to other machine learning algorithms. 
Keywords- ELM, SRAN,  McNN,  Meta-Cognitive  

I.  INTRODUCTION  
Data mining deals with two different types of learning supervised and unsupervised learning. Supervised 

learning is involved for classification as it is used to model different input and output relationships. The learning 
methods can be given to any kind of data. Likewise people, machine can also be trained for different learning 
methods. Learning may be rather sequential or batch. In sequential learning structure the samples that require 
training arrives one-by-one and after learning they are discarded which results in less memory and computational 
time.  In addition the sequential algorithms automatically determine the minimal architecture that can accurately 
approximate the true decision function described by a stream of training samples.  Radial basis function networks 
have been extensively used in a sequential learning framework due to its universal approximation ability and 
simplicity of architecture. [5] 

A well known paradigm in fast learning neural network is extreme learning machine (ELM) [10]. It is a batch 
learning algorithm for a single-hidden layer feed forward neural network.  

ELM chooses input weights randomly and analytically determines the output weights using minimum norm 
least-squares. Three activation functions are used in ELM namely Unipolar, Bipolar and Gaussian. The efficiency 
of this machine learning algorithm changes from one execution to the other, which can be averaged to a better 
efficiency. In case of sparse and imbalance data sets, the random selection of input weights in the ELM and its 
variants affects the performance significantly [2,11,12,25].  

Another Sequential learning algorithm is Self-adaptive Resource Allocation Network (SRAN). [9] in which 
significant samples are selected using misclassification errors and hinge loss function. It has been shown in 
[9,13] that the selection of appropriate samples by removing repetitive samples helps in achieving better 
generalization performance. The sample neurons are reserved for future use. Pruning strategy is executed to 
improve the performance of classification.  

Recent studies in human learning suggested that the learning process is effective when the learners adopt self-
regulation in learning process using meta-cognition. The term meta-cognition is defined as ‘one’s knowledge 
concerning one’s own cognitive processes or anything related to them’. In particular the learner should control the 
learning process, by planning and selecting learning strategies and monitor their progress by analyzing the 
effectiveness of the proposed learning strategies. When necessary, these strategies should be adapted 
appropriately. Meta- cognition present in human-being provides a means to address what-to-learn, when-to-learn 
and how-to-learn, i.e., the ability to identify the specific piece of required knowledge, judge when to start and 
stop learning by emphasizing best learning strategy. Meta-cognitive Neural Network classifier is capable of 
deciding what-to-learn, when-to-learn and how-to-learn the decision functions from the training 
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data[15][16][17][18][19]. Meta-cognitive Neural Network (McNN) classifier which employs human-like meta-
cognition to regulate the sequential learning process. [20][21][22][23][24]In this paper section II describes the 
methods and the dataset, section III discusses the experimental results and section IV concludes the paper.  

II. METHODS 
A. Extreme Learning Machine  
Descripition of Extreme learning machine (ELM) 

For N arbitrary distinct samples ( , )i ix t , where [ ]1 2, ,..., T m
i i i inx x x x R= ∈

, and [ ]1 2, ,..., T m
i i i int t t t R= ∈

, 

standard SLFNs with N  hidden nodes and activation function ( )g x  are mathematically modeled as 

1 1
( ) ( . ) ,

N N

i i j i i i j i j
i i

g x g w x b oβ β
= =

= + =∑ ∑
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where [ ]1 2, ,..., T
i i i inw w w w=

 is the weight vector connecting the ith hidden node and the input nodes, 

[ ]1 2, ,..., T
i i i inβ β β β=

 is the weight vector connecting the ith hidden node and the output nodes, and bi is 

the threshold of the ith hidden node. 
.i jw x

 denotes the inner product of wi and xj.  The standard SLFNs with 
N  hidden nodes with activation function ( )g x  can approximate these N samples with zero error means by  
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The above  equations can be rewritten compactly as 
,H Tβ =            (3) 
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As named in Huang et al. [10,12], H is called the hidden layer output matrix of the neural  network; the ith 

column of H is the ith hidden node output with respect to inputs 1 2, ,..., Nx x x . In the case of learning an 
arbitrary function with zero training error, Baum had presented several constructions of SLFNs with sufficient 
hidden neurons. However, in practice, the number of hidden neurons required to achieve a proper generalization 
performance on novel patterns is much less. And the resulting training error might not approach to zero but can 
be minimized by solving the following equation: 

1 1( ,..., , ,..., )N NH w w b b Tβ −
 

  

 

1 1( ,..., , ,..., )min
i i

N N
w b

H w w b b T
β

β= −
 

                  (6) 
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When H is unknown the gradient-based learning algorithms are generally used to search the minimum of  
H Tβ −

.The above problem is well established and known as a linear system optimization problem. Its 
unique least-squares solution with minimum norm is given by: 

                
†ˆ H Tβ =                 (7) 

where 
†H  is the Moore-Penrose generalized inverse of matrix H. 

Algorithm ELM: Given a training set  {( , ) | , , 1,.., }n m
i i i ix t x R t R i Nℵ= ∈ ∈ = , activation function 

g(x),and hidden node number N  , 

Step 1: Randomly assign input weight wi and bias  bi ,  1,..,i N= 

. 
Step2:Calculate the hidden layer output matrix H. 
Step 3: Calculate β the output weight  

B. Self-Adaptive Resource Allocation Network 
Online/sequential learning for a multi-category classification problem can be stated in the following manner. 

The observation data arrives one-by-one and one at a time. After learning, the sample is discarded from the 

sequence. Suppose we have the observation data {(x1,y1),(x2,y2),... ,(xt,yt),...}, where 
m

tx ∈ℜ  is an m-

dimensional features of observation t and 
m

ty ∈ℜ  is its coded class label. Here, n represents the total number 
of classes. For notational convenience, the subscript t is left out in all further discussion. If the feature 
observation x is assigned to the class label c, then cth element of y = [y1,... ,yc,... ,yn]T is 1 and other elements 
are -1. 

1
1 , 1,2,..,j

if j c
y

otherwise j n
 ==

= 
− =              (8) 

The observation data are random variables and the observation x provides some useful information on 
probability distribution over the observation data to predict the corresponding class label with certain accuracy. 
Hence, the classification problem is to predict the coded class label y of a new observation x. This requires us to 
estimate a functional relationship between the coded class label and feature space from sequential training data. 
In the SRAN classifier, a radial basis function network is used as a building block. The SRAN network 
approximates the functional relationship between the feature space and the coded class label. 

The output of the SRAN classifier 1ˆ ˆ ˆ( [ ,..., ] )T
ny y y=  with K hidden neurons has the following form: 
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where 
I
jµ  is the jth neuron center corresponding to the ith class, 

I
jσ

 is the width of the jth neuron and ijα
 

is the weight connecting the ith output neuron and jth Gaussian neuron. 
The predicted class label cc for the new training sample is given by 

1,2,..,

ˆ ˆarg max i
i n

c y
∈

=
                        (11) 

In other sequential learning algorithms, the error (e) is usually the difference between the actual output and 

predicted output ˆ( )y y− , which is used in the mean square error loss function. For classification problems, the 
above definition of error restricts the outputs of the neural classifier between 7-1. In [13,14], it is shown that the 
classifier developed using a hinge loss function can estimate the posterior probability more accurately than the 
mean square error loss function. Hence, in our formulation, we use a hinge loss function to calculate the error e 
= [e1,e2,... ,en]T and is given below 
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With this hinge loss function, the network output can grow beyond 1±  and prevent the saturation problems 
in the learning process. The truncated outputs of the classifier model approximate the posterior probability 
accurately. The truncated output is defined as 

,ˆ ˆ( ) min(max( 1),1), 1, 2,...,i iT y y i n= − =
            (13) 

Since, the target vectors are coded as - 1 or 1, the posterior probability of observation vector x belonging to 
class c is 

ˆ( ) 1ˆ ( | )
2

T yp c x +
=

          (14) 
In the setting of standard online/sequential learning, the training sample arrives one at a time and the 

network adapts its parameters based on the difference in knowledge between the network and the current 
sample. When new sample (xt) is arrived to the network, based on the sample error (e), the sample is either used 
for network training (growing/learning) immediately, pushed to the rear end of the stack for learning in future, 
or deleted from the data set. The detailed description of SRAN is explained in [8]. 
Algorithm  for  SRAN  

Input : Present the training data one-by-one to the network from data stream. 
Output : Decision function that estimates the relationship between feature space and class label. 
START 
Initialization : Assign the first sample as the first neuron (K = 1).  
Start learning for samples t = 2,3,... 
DO 
Compute significance of the sample to the network: 

Compute the network output ˆty . 

Find the maximum absolute hinge error E and predicted class label ĉ . 
Delete Redundant samples: 

IF 0.05E ≤  THEN 
Delete the sample from the sequence without learning. 
ENDIF 

IF 
ˆ ac c AND E η≠ ≥

THEN 
Add a neuron to the network (K = K +1). 
Choose the parameters of the network  
Update the control adding parameters  

ELSEIF 1ˆc c AND E η== ≥  THEN 
Update the parameters of the network using EKF  
Update the control parameters  
ELSE 
The current sample xt, yt

They can be later used to fine-tune the network parameters. 
ENDIF 

 is pushed to the rear end of the sample stack to be used in future.   

ENDDO 
C. Meta-cognitive Neural Network  

In this section, we present the architecture of the Meta cognitive Neural Network (McNN) classifier and its 
working principles. McNN architecture is developed based on the Nelson and Narens meta-cognition model. 
The information flow from the cognitive component to meta-cognitive component is considered monitoring, 
while the information flow in the reverse direction is considered control. McNN has two components namely the 

Padma.S et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 144



cognitive component and the meta-cognitive component. The cognitive component of McNN is a three layered 
feed forward radial basis function network with Gaussian activation function in the hidden layer. The meta-
cognitive component contains copy of the cognitive component. When a new training sample arrives, the meta-
cognitive components of McNN predicts the class label and estimate the knowledge present in the new training 
sample with respect to the cognitive component. Based on this information, the meta-cognitive component 
selects a suitable learning strategy, for the current sample. Thereby, addressing the three fundamental issues in 
learning process: (a) what-to-learn, (b) when-to-learn and (c) how-to-learn [15-24].  

a. Cognitive component of McNN 
The cognitive component of McNN is a three layered feed forward radial basis function network. The input 

layer maps all features to the hidden layer without doing any transformation, the hidden layer employs Gaussian 
activation function and the output layer uses a linear activation function. 

Without loss of generality, we assume that the meta-cognitive learning algorithm builds K Gaussian neurons 
from i-1 training samples. For given training sample iX  , the predicted  

output 1( [ ,..., ,..., ] )
i i i i

T
j nY Y Y Y

∧ ∧ ∧ ∧

=   of McNN classifier with K hidden neurons is 

0
1

( )
i k

i
j j jk k

k
Y Xα α φ
∧

=

= +∑ ,  j = 1,2,..,n                  (15) 

where 0jα  is the bias to the jkα output neuron, ( )i
k Xφ  is the weight connecting the kth hidden neuron to 

the jth ( )i
k Xφ output neuron and  is the response of the kth  hidden neuron to the input xi

2

2( ) exp( )
( )

i l
i k

k l
k

XX µφ
σ
−

= −
 

 is given by 

                  (16) 

where l
kµ  is the center and l

kσ  is the width of the kth

 

 hidden neuron. Here, the superscript l represent the 
class that hidden neuron belongs to. 

b. Meta-cognitive component of McNN 

The meta-cognitive component uses estimated class label c
∧

, maximum hinge error (E), posterior probability 

as confidence measure ( ( | ))ip j x
∧

 and spherical potential based class-wise [20] significance as a measure of    
knowledge in the new training sample. Using these measures, the meta-cognitive component devices various 
learning strategies. First, we describe these measures in detail. 

Estimated class label ( c
∧

): Using the predicted output ( )
i

y
∧

, the estimated class label ( c
∧

 ) can be obtained 
as 

max
1,2,..,arg

i

j n jc y
∧ ∧

∈=                                                          (17) 
    

Maximum hinge error (E): The objective of the classifier is to minimize the error between the predicted 

output ( )
i

y
∧

 and actual output (yi

1( [ ,.., ,.., ] )T
j ne e e e=

 ). In classification problems, it has been shown that the classifier developed 
using hinge loss function estimates the posterior probability more accurately than the classifier developed using 
mean square error function . Hence, in McNN, we use the hinge loss error   defined as  

{ 0 1,

,
1, 2,..,

i i

j j
i i

j j

if y y
j otherwise

y y
e j n

∧

∧

>

−
= =                 (18) 

The maximum absolute hinge error (E) is given by 
max

1,2,..,j n jE e∈=                                                              (19) 

Confidence of classifier: The confidence level of classification or predicted posterior probability is given as 
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min(1,max( 1, )) 1
( | )

2

i
i

ji y
p c x

∧
∧ − +

=                (20) 

Class-wise significance ( )cψ : In general, the input feature (x) is mapped on to a hyper-dimensional 

spherical feature space S using K Gaussian neurons, i.e., x φ→ . Therefore, all ( )xφ  lie on a hyper-
dimensional sphere. The knowledge or spherical potential of any sample in original space is expressed as a 
squared distance from the hyper-dimensional mapping   centered at 0φ . 

In McNN, the center (µ ) and width (σ ) of the Gaussian neurons describe the feature space . Let the 

center of the K-dimensional feature space be 0 1

1( ) ( )k
kkk

φ φ µ
=

= ∑ . The knowledge present in the new data xi

0φ

 

can be expressed as the potential of the data in the original space, which is squared distance from the K-
dimensional feature space to the center .The potential (ψ ) is given as 

2
0( )ixψ φ φ= −                                                           (21) 

Using the steps , the above equation can be expressed as 

21
, 1

2 1( , ) ( , ) ( , )
k

ki i i l l l
k k rk

k r
x x x

k k
ψ φ φ µ φ µ µ

=
=

= − +∑ ∑                                  (22) 

From, the above equation, we can see that for Gaussian function the first term ( ( , ))i ix xφ  and last 

term 2
, 1

1(( ) ( , )
k

l l
k r

k rk
φ µ µ

=
∑  are constants. Since potential is a measure of novelty, these constants may be 

discarded and the potential can be reduced to 

1

2 ( , )
k

i l
k

k
x

k
ψ φ µ

=

≈ − ∑                            (23) 

Since we are addressing classification problems, the class-wise distribution plays a vital role and it will 
influence the performance of the classifier significantly. Hence, we use the  measure of the spherical potential of 
the new training sample xi belonging to class c with respect to the neurons associated to same class (i.e. l=c). Let 
Kc

( )cψ
 be the number of neurons associated with the class c, then class-wise spherical potential or class-wise 

significance  is defined as 

, 1

1 ( , )
cK

i c
c kc

k r
x

k
ψ φ µ

=

= ∑                  (24) 

The spherical potential directly indicates the knowledge contained in the sample, a higher value of spherical 
potential (close to one) indicates that the sample is similar to the existing knowledge in the cognitive component 
and a smaller value of spherical potential (close to zero) indicates that the sample is novel. 
McNN algorithm can be summarized as below: 

1. For each new training sample input ( )iX  compute the cognitive component output ( )y
∧

.  

2. The meta-cognitive component finds the estimated class label ( )c
∧

, maximum hinge error (E), confidence 

( ( | ))ip c X
∧

 and class wise significance cψ  measures for the new training sample ( )iX .  

3. The meta-cognitive component selects one of the following strategies based on the above calculated 
measures.  

(a) Sample delete strategy: If  ( ( | ))i
dp c X β

∧

≥  AND c c
∧

==  then delete the sample from the sequence 
without learning.  
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(b) Neuron growth strategy: If c c
∧

≠  AND ( )i
c cXψ β≤  AND aE β≥  , then allocate a new hidden 

neuron in the cognitive component and its parameters are calculated based on the  intra- and inter-class nearest 
neurons distances . Also, update the self-adaptive meta-cognitive addition threshold and increase the 
dimensionality of P. 

(c) Parameters update strategy: If c c
∧

==  AND uE β≥ , then update the cognitive component parameters 
using EKF. Also, update the self-adaptive meta-cognitive update threshold  
(d) Sample reserve strategy: When the new sample does not satisfy deletion, growth and update criterion, then 
push the sample to the reserve to be used later for learning.  

4. The cognitive component executes the above selected strategy.  
5. Continue steps 1-4 until there are no more samples in the training data stream or number of samples 

remains same in the reserve.  
D. Dataset 

a. E.coli Dataset 
Performance of classification may get differ depending on the dataset. If the dataset is imbalanced it 

results in the performance of the machine learning algorithm used.[2,25].The prokaryotic gram-negative 
bacterium Escherichie Coli is an important component of the biosphere, it colonizes the lower gut of 
animals and humans. The Escherichia Coli benchmark dataset has been submitted to the UCI Machine 
Learning Data Repository. The dataset patterns are characterized by attributes calculated from the amino 
acid sequences. Protein patterns in the E.coli dataset are classified to eight classes, it is a drastically 
imbalanced dataset of 336 patterns. Protein patterns in this dataset are organized as follows: 143 patterns 
of cytoplasm (cp), 77 of inner membrane without signal sequence (im), 52 of periplasm (pp), 35 of inner 
membrane without uncleavable signal sequence (imU), 20 of outer membrane without lipoprotein (omL), 
5 of outer membrane with lipoprotein (omL), 2 of inner membrane without lipoprotein (imL) and 2 
patterns of inner membrane with cleavage signal sequence (imS). The class distribution is extremely 
imbalanced, especially for imL and imS proteins.[1] 

III. EXPERIMENTAL RESULTS  
The performance evaluation of the ELM , SRAN and McNN classifier using real world classification 

problems from UCI machine learning repository. The proposed methods have been implemented using 
MATLAB. The statistical measures could be used to evaluate the performance of the proposed method. 
a. Cross Validation  

In this study, we used Cross Validation tests to evaluate the classifier robustness, this methodology is most 
suitable to avoid biased results. Thus, the whole training set was divided into ten mutually exclusive and 
approximately equal-sized subsets and for each subset used in test, the classifier was trained on the fusion of all 
the other subsets. So, cross validation was run ten times for each classifier and the average value of the ten-cross 
validations was calculated to estimate the overall classification accuracy. 
b. Performance Measures : 

Class-level performance is indicated by the percentage classification which tells us how many samples 

belonging to a particular class have been correctly classified [9]. The percentage classification iη  for class ci is  

ii
i T

i

q
N

η =
                     (25) 

where iiq  is the number of correctly classified samples and 
T
iN  is the number of samples for the class ci  in 

the testing data set. The global performance measure the average ( )aη   classification efficiency, is defined as 

1

1 cn

a i
icn

η η
=

= ∑
                    (26) 

where nc is the total number of classes. 
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TABLE 1. TRAINING AND

Fold 
No 

 TESTING EFFICIENCIES OF 10 FOLDS. 

ELM SRAN McNN 
Tra 
Eff 

Tes 
Eff 

Tra   
Eff 

Tes 
Eff 

Tra 
Eff 

Tes 
 Eff 

1 86 81 90 88 93 96 
2 85 84 91 87 93 90 
3 84 85 87 85 93 86 
4 86 87 91 93 92 93 
5 83 84 90 89 93 92 
6 86 85 90 85 94 86 
7 87 80 91 85 93 85 
8 85 83 91 93 91 93 
9 84 83 90 90 91 90 

10 86 82 90 84 93 85 

Table 1. Discusses in detail the average training and testing efficiencies of ten cross fold validation. As 
already discussed the dataset is divided into ten out of that 9 folds are considered for training and the 
remaining one fold for testing. Every fold result is compared with ELM, SRAN and McNN and it shows 
that the performance result of McNN is better when compared to ELM and SRAN. 

 
Figure 1 Comparison of testing efficiences with algorithms. x-axis with its fold numbers and testing efficiencies in the y-axis. 

 

Figure 2 Comparison of average training and testing efficiences with algorithms. x-axis with its effieciency values and algorithms used for 
experiment in the y-axis. 

The above figures fig 1 and fig 2 clearly explains the better  performance of McNN. Both training and testing 
efficiences comparison are shown which describes that McNN performs well when compared to SRAN. SRAN 
performs well when compared to ELM. 

IV. CONCLUSION 
This paper concludes that McNN a sequential learning algorithm with the policy of when-to-learn, what-to-

learn and how-to-learn performs well in classifying an imbalanced dataset E-Coli. The learning strategy of the 
classifier reduces the growth of neurons and hence improves the performance of classification which is represents 
in the experimental results.  The ten cross fold validation is used to improve results. Finally when compared to 
batch learning algorithm ELM and sequential algorithm SRAN, McNN which is also a sequential algorithm 
performs well. 
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