
Comparative evaluation of Recursive
Dimensional Cutting Packet Classification,

DimCut, with Analysis
Hediyeh AmirJahanshahi Sistani1, Haridas Acharya2

1,2

hediehamirjahanshahi@yahoo.com
Department of Computer Studies and Research, Symbiosis International University, Pune, India

2

haridas.undri@gmail.com
Allana Institute of Management Science, Pune University, Pune, India

Abstract— an infinitely expanding number of network appliances are utilising packet classifiers to
fulfil Quality of Service, security, and traffic engineering tasks. Packet classification is an important role
of firewalls and routers. Internet firewalls, routers an d service providers perform different operations at
different flows. All the packets have to be classified methodically for emerging broadband internet
services, and applications such as Internet TV/Radio, gaming, Video on Demand (VoD) and e-businesses,
which are in perpetual demand for a higher degree of transmission bandwidth, complex security, and
specific Quality of Service (QoS).

 This paper presents a comparative evaluation packet classification of algorithms, HiCut, based on a
decision tree structure, and the Recursive Dimensional Cutting (DimCut). The comparison has been
conducted on operations based on similar principles and design choices. Performances measurements
have been obtained by placing the implemented classifiers in the same test conditions scenario. In
particular, the comparison aims at achieving a good arrangement between performance, memory usage
and flexibility.

 The Recursive Dimensional Cutting (DimCut) is the extension of HiCut algorithm with new heuristics
ideas, implementing techniques and parallel programming features which classify packets while retaining
HiCut’s basic framework. After testing the DimCut algorithm, for classifying packets based on five
header fields, it is observed that the algorithm can classify packets rapidly. The DimCut algorithm has
two separated levels, pre-processing level (tree construction and making index table) and search level.

Keywords— Firewalls; Rules; Packet Classification; Partitioning; Evaluation; DimCut
INTRODUCTION

Internet traffic comprises of an ordered sequence of packets, where every packet consists of header and data.
The data in each packet contains a fraction of the large set of data which has been branched into packets at the
source, that later get assembled into the original data when reaching the destination. The main function of a
firewall is to inspect and decide about the network traffic in accordance with the security policy. The security
policy system clarifies how to process the network traffic. Normally, the security policy and rules are entered
manually by a system administrator to specify an action for traffic flows, and defines how to process the traffic
[1].

A packet classifier must compare header fields of every incoming packet against a set of rules with the
purpose of assign a flow identifier that is applied in security policies [2][3][4].

Providing enhanced data structures, assigning priorities to rules to avoid conflicting and multiple matches,
and pre-processing the Rule Base, have been some of the common techniques used by various researchers to
improve the algorithms [5]. The basic difficulty of packet classification are large number of rules (size of rule
set), growing network traffic (traffic intensity) and large dimensionality of the packet attributes data base (large
item sets) [6][7][8][9][10][11][12].

Through this paper, our objective is to modify the existing packet classification system, based on heuristic
method, to reach a faster packet classification system and providing a comparative evaluation. It results in a
more appropriate and reasonable performance with a logical benchmark.

OpenMP [13] (Open Multi-Processing) is well-thought-out as an execution of multithreading. The threads run
parallel with the runtime environment, assigning threads to varied processors. We have used the OpenMP API
commands and functions that support C programing language to implement the DimCut and have attempted to
forward a new algorithmic technique to solve the packet classification problems.

In this paper we explain briefly our previous proposed DimCut packet classification algorithm and compare it
with the HiCut decision tree-based packet classification algorithm, upon which the DimCut is based. The
suggested improvements have been validated through simulated trials [2][14].

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 80

mailto:hediehamirjahanshahi@yahoo.com�

The present study paper is organized as follows. Section One contains the various algorithms studied to
capture the basic ideas, as each one has its own advantages and disadvantages. Section Two explains and studies
the HiCut and DimCut algorithms. Section Three deals with the implementation objectives and the directions
followed to develop the software. Section Four provides the results of the comparative evaluation on the
concerned work, and also analyses the results of our experiments and findings. Section Five provides the final
conclusive remarks.

I. RELATED WORK
In the multidimensional packet classification, trade memory is used for better speed and performance. When

the number of rules increases, the result is poor, either towards search time or memory usage. Researchers have
been attempting to solve these problems in industrial and academic areas [6] and [15]. The packet classification
problem still remains a vital challenge in network processing [6][11][15][16][17][18]. A considerable survey on
packet classification algorithms is found in the “Survey & Taxonomy of Packet Classification Techniques”
paper [5].

The authors, Srinivasan, Varghese, Suri, and Waldvogel, have recommended the Grid-of-Tries and
CrossProducting algorithms for packet classification. The data structure of ‘Grid of Tries’ algorithm is extended
to two fields, and uses a decision tree for packet classification on source and destination address prefixes. The
authors suggest the CrossProducting solution for multiple fields and bigger classifiers, and also propose a
caching technique with the non-deterministic classification time [11].

Baboescu, Singh, and Varghese are researchers who have proposed Extended Grid-of-Tries (EGT) which
essentially sustains multiple fields. It is important to note that the EGT alters the switch pointers to become
jump pointers that maneuver the search to all feasible matching filters, rather than the filters with the longest
matching destination and source address prefixes [19].

Feldman and Muthukrishnan have developed independent field searches on Fat Inverted Segment (FIS)
Trees. It provisions a geometric view of the rule set and maps rules in d-dimensional space [18].

Packet classification, when viewed geometrically, uses the construction of data structures and representation
of rules. The preprocessing of rule sets uses the strategy of cutting, or projecting, of the multi-dimensional
space. The rule set is partitioned and regrouped, so that a packet can quickly identify a reduced rule set that
includes the matching rule. Woo’s modular packet classification, Multidimensional Cuttings (HyperCut) and
Hierarchical Intelligent Cuttings (HiCut), utilizes this approach in algorithms [2][3][19]. The recursive flow
classification (RFC) algorithm is competent in reducing the storage. It has been observed that the storage is
reduced, while maintaining the high throughput even for larger filter sets. These recommended tradeoffs should
be maintained to obtain better performance [11][17].

There is also a packet classification algorithm that uses the tuple space search technique to expresses a Tuple
as a pair of prefix lengths, where one hash table stores the filters that belong to one same tuple [20]. The lookup
implementation for tuple space techniques differs significantly. Lookups in individual tuple can be conducted
through a simple hash table [2].

The bit vector search algorithm [12] is based on a set of rules which matches a packet in a dimension. The
characteristics of this technique is that, the packet header can be split into substring and matched with a subset
of rules, whose intersection will give a rule to match the whole packet header. Baboescu and Varghese had
proposed the Aggregated Bit-Vector (ABV) algorithm that helped to improve the performance function of the
Parallel BV technique [12][21].

 Every technique possesses some shortcomings, positive and negative aspects, extensions and limitations.
To achieve a decent performance, the algorithm has to be designed to combine all methods, useful
characteristics and also utilize the time-space tradeoff well.

Many researches have analyzed and explained the problems of packet classification, and several solution
algorithms have been proposed, but it still remains a problem, especially for emerging services, which
eventually increases the number of classification rules, classification packets and bandwidth [1][22].

II. HICUT AND DIMCUT ALGORITHMS
A. HiCut

Gupta and McKeown have introduced a packet classification algorithm called Hierarchical Intelligent
Cuttings (HiCut) [2]. The concept of “cutting” comes from viewing the packet classification problem
geometrically. HiCut preprocesses the rule set in order to build a decision tree with leaves containing a small
number of rules delimited by a threshold. Packet header fields are used to traverse the decision tree until a leaf is
reached. The rules stored in that leaf are then linearly searched for a match. HiCut uses of only four fields
(dimension) to construct the decision tree. The algorithm uses various heuristics to select decision principles at
each node that minimize the depth of the tree while controlling the amount of memory used. The number of cuts

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 81

is determined by the local cutting situation and a configurable space measure factor, spmf. The largest possible
number of cuts is taken as long as the following inequality is satisfied.

spmf * number of rules at node r ≥ ∑ number of rules at each child of node r + number of cuts
Apart from the number of cuts, the dimension to cut along each decision tree node r is also critical to the

algorithm performance. The algorithm gives four options. Neither one is consistently better than the others for
different rule sets. A larger bucket size can help reduce the size and the depth of the tree, but will take a longer
linear search time. Also some optimization can be done like redundancy elimination and child node reusing [6].
The results are not comparable for different rule sets and options. In some cases, some suggested options by the
algorithm do not work at all. In practice, the user needs to test all the options and possibilities to find the better
proper one [18].

B. DimCut
The DimCut algorithm is equipped modifications and improvements on the HiCut algorithm. DimCut is a

Packet Classification Algorithm based on a decision tree, using Recursive Dimensional Cutting. It has two
separated levels, pre-processing level (tree construction) and search level. DimCut deals with the geometric
view of the packet classification problem, where each rule defines a d-dimensional rectangle in d-dimensional
space, and where d is the number of fields in the rule. The algorithm pre-processes the rule set implied to
establish a decision tree, and it is well elucidated that the leaves contain a subset of rules with the number of
rules bound by a predefined threshold. Packet header fields look up for the proper leaf, and then linearly search
for a matched rule belonging to that leaf [14].

The DimCut uses a heuristic to pick an appropriate dimension to cut across and pick the appropriate number
of partitions (cut) to be made, with the purpose of distributing the rules inside the partitions properly in a
balanced manner, and with minimum possible rules repetition that would be found practically. A larger number
of cuts at a node reduce the tree depth, but may increase rule replication and the number of branches, which may
not achieve a good rule separation and also increase the memory usage. The process of cutting is performed at
each level, and recursively on the child nodes of that level, until the number of rules associated with each node
fall below the threshold (maximum number of rules that can be at a leaf node). We have attempted to find
heuristics and techniques that can modify the algorithm to reach a high performance with reasonable memory
consumption.

The DimCut algorithm provides certain modifications and enhancements on the HiCut algorithm. In DimCut,
the GL (H) is the geometric length associated with column H in the whole of the rule set. To choose the proper
cut dimension, two fields Ha, Hb are selected which have the least GL () values.

Regression analysis is a statistical process for estimating the relationships among variables. To decide the
number of cuts, regression analysis was conducted on 45 different number of rules (100- 100000) with 10
different number of cuts samples. Based on the analysis and results of several tests with reference to efficiency
and performance , it is found that the best Number of cuts can be computed with the formula, NC = 495.22 +
(0.034 * N) + (9 * 10-7 * N2) + (6.23*10-12 *N3

In this algorithm, the Array Pointer structure is used which works with a large amount of rules. All rules have
been arranged in priority order, in accordance with the network administrator policy. The decision tree will
extend across to search the buckets covering the incoming packet and will jump to the first bucket regions of its
origin. When the first match bucket is available, a packet will forward to all possible regions of the bucket and
then all the header fields of the packet will compare to all governing rules linearly. In this process, the most
prioritized rule is selected which matches perfectly.

), the Bucket size (The threshold) set as, B = 2 if N<=10000 and
B=5 if 10000<N<40000 and B= 8 if 40000<=N<=100000, Here, N = Total Number of rules (as provided some
of samples in “fig. 12, 13, 14,” as the specified evidence set out in Appendix A).

Rule classification example with 9 rules with 6 fields, is shown in Table I and “Fig. 1, 2, 3”.
“Fig. 1,” shows the geometric view of rules in Table I. In this example, at the first level we select the SrcIP

dimension as the cut dimension, the number of cut is set to 4 and the threshold is set to 2, partition one includes
R2, R7 and R8, partition two includes R9, partition three includes R5 and R6, and in partition four there are R1,
R3 and R4. As the node one and four have more than two rules, so they need to be partitioned again, as shown
in “Fig. 2”. The full space range for IP addresses are 0 to 232, while the ranges of each partition, after cutting, are
mentioned in “Fig. 2, 3”.

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 82

Table I: In this example 9 rules are shown in priority, with six fields (source Ip address, destination Ip address, source port, destination

port, protocol and action (policy)).

Fig. 1. Each rectangle represents a geometric view of a rule. Whole space should divide into smaller spaces to partitioning the rule set.

Fig. 2. Shows bucket ranges in cut dimension fields; the root node covers all portions of the d dimensional space (Rule classification).

Fig. 3. Shows how the incoming packet finds and jumps to the proper bucket and matched rule.

In the second level of partitioning, we will select the DstIP dimension as the cut dimension, and the number
of cut is set to 2. So the nodes are arranged as shown in “Fig. 2”. As these nodes do not include more than the
threshold amount of rules, so all the nodes are leaf nodes. Therefore, the tree construction (rule classification)
gets completed.

With the purpose of classifying any packet, according to the cut dimension corresponding field, the leaf node
which is storing the best matching rule for the packet, should be considered. To arrive at the proper leaf
(Bucket) by using the following method, it’s possible to jump to the proper node rather than traversing the tree,
which is the main key for the high performance and efficiency of our algorithm (the mathematically proof is
illustrated in Appendix B).

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 83

Bucket number = [(Packet (Cut Dimension) – Bucket (Cut Dimension).Low) / ((Bucket (Cut
Dimension).High - Bucket (Cut Dimension).Low) / Number of Cuts)] +1

Suppose the incoming packet p1 that has source IP Address 192.168.100.100, destination IP Address
172.16.1.5, source port 80, destination port 1024 and protocol TCP, needs to get classified, as shown in “Fig. 3”.

Digital number equal to source address: 192*2563+168*2562

Digital number equal to destination address: 172*256
+100*256+100=3232261220

3+16*2562

We are going to find the node that covers this incoming packet, so according to the Bucket number finding
formula:

+1*256+5=2886729989

Selected cut dimension is Source IP Address, Bucket number = [(3232261220 - 0) / ((232

The next level selected cut dimension is Destination IP Address, Bucket number = [(2886729989 – 0) / ((2
 – 0) / 4)] + 1 = 4

32

According to the procedure, the first bucket number will be 4, and as it also has a child, the second bucket
number at the next level will be 2. So, there are R3 and R4 in the target bucket and, after linearly search, will
find the fully matched rule, that is, R4. Finally, as the R4 action is acceptance in Table I, so the P1 will get
accepted.

– 0) / 2)] + 1 = 2

The index table indexes a reference number to the proper bucket that covers the incoming packet after the
optimization, such as eliminating the empty nodes, region compaction, node merging etc.

 “Fig. 4,” shows all the main procedures for packet classification, and Appendix C shows the Pseudo Codes
in “Fig. 15, 16, 17, 18”.

It is significant that optimization of the decision tree can be completed by excluding the empty nodes, and
combing the nodes that belong to the same set of rules [2][3].

Our efforts have been to search for better methods in order to calculate the number of cuts, selecting the cut
dimension and setting the proper threshold along with implementing a suitable technique and data structure to
affect the algorithm performance.

Fig. 4. Shows Classifier flowchart and main procedures.

III. EXPERIMENTAL METHODOLOGY
Contribution of our work lies in the detailed and consistent evaluation of such selected algorithms that have

been implemented with common principles and evaluated in a common test bed.
To compare Hicut and DimCut (simple mode and using six threads mode) with each other, we have run the

full test, provided the data analysis and drawn the suitable graphs. Search performance is evaluated by running it
through large number of packets and rules; and to reach the best evaluation, the worst case scenario is used for
providing the same condition for all tests.

The testing experiments have been conducted on standard PCs with 8 cores Intel Xeon 3.00 GHz, RAM 8.00
GB, using the Oracle VM Virtual Box to provide an isolated environment, using GCC 4.7.1 compiler, with
OpenMP enabled and OpenMP disabled.

For these tests, the 1000, 5000, 10000 … 100000, numbers of random rules and the 20000 numbers of
random packets have been generated, the packet size is 20 Byte and the rule size is 52 Byte.

All tests have been conducted multiple times and all tests run in two execution models, Normal Run (Single
Thread) and OpenMP (Multi Threads - Parallel). The OpenMP is an API that supports multi-platform shared
memory multiprocessing programming in C and it’s an implementation of multithreading, a method of
parallelizing by using Omp.h header file, gomp and pthread library.

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 84

In the”Fig. 5,” the plan of the simulated experimented is shown.

Fig. 5. Simulated experimented methodology model setup.

The rule’s headers are Source IP (32 bit) and Destination IP (32 bit): (Exact/prefix), Source Port (16 bit) and
Destination Port (16 bit): (Exact value, any, ranges), Protocol (8 bit): (TCP, UDP, ICMP, ANY, IGMP, GRE,
IGP, EGP) and the Actions (8 bit): (Accept; Deny, Log, Forward, Nothing).

The evaluation metrics and parameters constitute the Cut Dimension, Number of Cut, Bucket Size, Rule
Classification Time (the amount of time needed to classify rules), Packet Classification Time (the amount of
time needed to classify packets), PPS (Packet Processed per Second), Bandwidth (Mbps) = (PPS * 8 * (size of
(Packet)) / (1024 * 1024)), Rule Memory Access, Bucket Memory Access (which shows the amount of read or
write a number of bytes to or from memory during packet classification process among the Buckets), RTSC
(Read Time Stamp Counter or number of CPU clock cycles ticks from the machine bootstrap), Number of Bytes
Accessed per Packet =((Rule Memory Access + Bucket Memory Access) / Packet Count), and Memory
consumption (the amount of maximum memory usage at the run time for both rule and packet classification).

The RDTSC ("read time stamp counter") instruction is available on processors and it is a tool for accurate
timing. It stores the number of elapsed clock-cycles since the time the processors are powered on. So, by
comparing the results of RDTSC before and after some action, could give the real run-time timing information
accurately to the clock cycles.

It is notable here that our reference implementations are only for the purpose of simulation and evaluation;
thus, the source code is not optimized as software. We have selected the configurations that lead to the best
overall performance.

IV. EXPERIMENTAL RESULTS
Graphs

The following graphs Show the comparison between the HiCut, the DimCut and the DimCut running with six
threads (T6). The “Fig. 6,”shows that, while the rules are increasing the Packet classification time also increases.
The DimCut T6 acts better with respect to time consumption and it is faster than the others during the course of
packet classification process.

Fig. 6. A comparison between the HiCut, DimCut and DimCut T6, to measure the packet classification time (milli second).

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 85

Fig. 7. A comparison between the HiCut, DimCut and DimCut T6, to measure the number of packet per second processing.

The “Fig. 7,”shows the Packet per Second processing (PPS), where, as the rules number increases, the
numbers of packet processing ability is decreasing during the packet classification action. However, the DimCut
algorithms seem to be more efficient than others. Memory usage is far higher in case of the HiCut algorithm
when compared to DimCut algorithms that their memory consumption grows linearly with the number of rules,
as can be seen from “Fig. 8”. The DimCut maximum memory consumption according to this test setup, for at
least 100000 rules would be near to 15 MB and that is very reasonable amount.

The “Fig. 9,”shows the estimated bandwidth measurement, which explains DimCut efficiency and
performance. It shows the Mega bit packet data processing per second. The “Fig. 10,”shows the number of
Bytes Access per Packet, which counts all the numbers of memory in Byte that are accessed during packet
classification per packet. The “Fig. 11,”shows the Time Stamp Counter per Packet, which counts the number of
cycles for each packet during the packet classification. The number of cuts and the dimension selection to cut at
each internal decision tree node are the critical sensitiveness for the algorithm performance. A larger bucket size
or lesser number of cuts can help to reduce the size and depth of a decision tree, but it can induce a longer linear
search time. Experimentally could determine the appropriate bucket size for the best trade off of storage and
throughput.

Fig. 8. A comparison between the HiCut, DimCut and DimCut T6, to measure the maximum of memory usage (M).

Fig. 9. A comparison between the HiCut, DimCut and DimCut T6, to measure the Bandwidth (Mbps).

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 86

Fig. 10. A comparison between the HiCut, DimCut and DimCut T6, to measure the Number of Bytes Access / Packet.

Fig. 11. A comparison between the HiCut, DimCut and DimCut T6, to measure Time Stamp Counter per Packet, which counts the number

of cycles for each packet.

The performance studies show that DimCut can provide an improvement up to 74% of the given rules in
Packet Classification Time calculation rather than the HiCut, as can be seen from Table II.

The outcomes of this test confirm that the HiCut is slower than DimCut. The HiCut algorithm shows the
tendency is approximately linear on the number of rules up to 10000 rules. In case of the memory usage, the
HiCut’s memory consumption is up to 15 times more than the DimCut algorithm.

Rule Counts DimCut
T6

DimCu
t

1000 29% 11%
5000 29% 8%

10000 74% 33%
50000 33% 16%
100000 33% 19%

Table II. The percentage of improvement in Packet Classification Time is shown rather than HiCut, for the given Rules in worst case
scenario.

According to the data analysis and graphs, it is proved that the proposed algorithms based on decision tree,
make packet classification faster, as compared to HiCut algorithm.

V. CONCLUSION
This paper focuses on the evaluation issues for high performance packet classification algorithms, which is an

important factor in Firewalls, routers, network security and quality of service (QoS) assurance.
Main contribution of our work lies in the detailed and consistent evaluation of HiCut and DimCut

classification algorithms that have been implemented with common principles and evaluated in a common test
bed, by measuring the Packet Classification Time, Number of Packet per Second Classification, Rule Memory
access, Preprocessing Time/Tree Construction Time, Number of buckets (leaves), Depth of the tree structure
and Threshold.

We utilized multi-threading by using OpenMP to implement the DimCut and achieved better performance
and results.

The final results have been illustrated in graphics for better representation. We are of the view that DimCut
can be a viable Packet Classification algorithm that gives a deterministic performance, besides providing
flexibility for system designers to tradeoff the components, and thus benefit the research and design community
as a whole.

Further studies are, therefore, required to explore more systematic ways for perfecting the configurable
parameters and improving the adaptive decision-tree construction procedures.

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 87

ACKNOWLEDGMENT
The authors express their sincere appreciation to the anonymous reviewer(s) for their insightful comments

and help rendered to improve the paper’s quality of presentation.
REFERENCES

[1] M. Sundström, “Time and Space Efficient Algorithms for Packet Classification and Forwarding”, Doctoral Thesis, Luleå University of
Technology Department of Computer Science and Electrical Engineering Centre for Distance Spanning Technology, 2007.

[2] S. Singh, F. Baboescu, G.Varghese and J.Wang, “Packet Classification using Multidimensional Cutting”, in Proceedings of the ACM
SIGCOMM ’03 Conference on Applications, Tech., Archi., and Protocols for Computer Communication (SIGCOMM ’03), pp.213 –
224, 2003.

[3] P. Gupta, N. McKeown, “Packet Classification Using Hierarchical Intelligent Cuttings”, in Proceedings of IEEE Symp. High
Performance Interconnects (HotI), 7, 1999.

[4] B. Vamanan, G.Voskuilen, T.N. Vijaykumar, “ EffiCuts: optimizing packet classification for memory and throughput”, in Proceedings
of the ACM SIGCOMM 2010 conference on SIGCOMM, New Delhi, India, 2010.

[5] D. Taylor, “Survey & Taxonomy of Packet Classification Techniques”, in Proceedings of ACM Computing Surveys (CSUR), vol 37,
Issue 3, pp. 238 - 275, September 2005.

[6] H. Song, J. Turner, “Toward Advocacy-Free Evaluation of Packet Classification Algorithms”, in IEEE Transactions on Computers,
vol. 60, MAY 2011.

[7] M. Bauer, “Paranoid penguin: Using Iptables for local security”, in Linux Journal, Available at
http://www.linuxjournal.com/article/609, August 2002.

[8] D. Napier, “IPTables/NetFilter – Linux’s next generation stateful packet fi lter”, in Sys Admin - Security: The Journal for UNIX
Systems Administrators, 10(12):8, 10, 12, 14, 16, December 2001.

[9] T.Woo, “A Modular Approach to Packet Classification: Algorithms and Results”, in Proceedings of INFOCOM 2000, Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies, vol.3, pp. 26-30 Mar 2000.

[10] D. Decasper, Z. Dittia, G. Pantlkar and B. Plattner Scottberg, “Router plugins: A software architecture for next generation routers”, in
Proceedings of ACM Sigcomm, pp. 191-202, Vancouver, Canada, 1998.

[11] V. Srinivasan, G.Varghese, S. Suri and M. Waldvogel, “Fast and scalable layer four switching”, in Proceedings of ACM Sigcomm '98,
pp. 191-202, Vancouver, Canada, 1998.

[12] D. Stihdis, T.V. Lakslunan, “High-speed policy-based packet forwarding using efficient multi-dimensional range matching”, in
Proceedings of ACM Sigcomm, pp. 203-214, Vancouver, Canada, August 31 – September 1998.

[13] OpenMP Architecture Review Board, 2013, Available at http://en.wikipedia.org/wiki/OpenMP and http://openmp.org/wp/
[14] H. Amirjahanshahi, M. Poustchi, H. Acharya, “Packet Classification Algorithm Based on Geometric Tree by using Recursive

Dimensional Cutting (DimCut)”, in proceeding of the Research journal of Recent Sciences, 2(8), pp.31-39, August 2013.
[15] M. Waldvogel, G. Varghese, J. Turner and B. Plattner, “Scalable High Speed IP Routing Lookups”, in Proceedings of the ACM

SIGCOMM, 25-38, 1997.
[16] V. Srinvasan, and G. Varghese,” Fast Address Lookups Using Controlled Prefix Expansion”, in Proceedings of the ACM Transactions

on Computer Systems, Sigmetrics '98/Performance'98 Joint International Conference on Measurement and Modelling of Computer
Systems, 1999.

[17] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields”, in proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication in ACM SIGCOMM ’99, 147-160, 1999.

[18] A. Feldmann and S. Muthukrishnan, “Trade-offs for Packet Classification”, in Proceedings of the IEEE INFOCOM, Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies, 3, 1193–1202, 2000.

[19] Y. Qi and J. Li, “An efficient hybrid algorithm for multidimensional packet classification”, in Proceedings of the International
Conference Communication, Network, and Information Security, MIT, Cambridge, MA, USA, October 9 – 11, 2006.

[20] H. Song, J. Turner and S. Dharmapurikar, “Packet Classification Using Coarse-Grained Tuple Spaces”, in Proceedings of the
ACM/IEEE Symp, Architecture for Networking and Comm., Systems (ANCS ’06), 41- 50, 2006.

[21] F. Baboescu and G. Varghese, “Scalable Packet Classification,” ACM SIGCOMM, 2001.
[22] M. Abdelghani, S. Sezer, E. Garcia and M. Jun, “Packet Classification Using Adaptive Rules Cutting (ARC)”, in Proceedings of the

IEEE Telecommunications, advanced industrial conference on telecommunications/service assurance with partial and intermittent
resources conference/e-learning on telecommunications workshop, 2005.

Appendix A

Fig. 12. Test the varying number of cuts behavior to find the better amount. In contrast, points those match with the proposed NC formula,

almost shows lower number of search processing across increases in rules.

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 88

Fig. 13. Test the varying Threshold (Bucket Size) behavior to find the better amount. In contrast, points those match with the proposed

Threshold set, almost shows lower number of search processing across increases in rules.

Fig. 14. It Shows the Cut Dimension selection differences. In contrast, points those match with the proposed Cut Dimension selection,

almost shows lower number of nodes to construct the tree across increases in rules.

Appendix B

PROOF:
Since there is exactly one integer in a half-open interval of length one, for any real x there are unique integers

m and n satisfying
 x-1< m <= x <= n < x+1 Then
 [x] = m and [x] = n may also be taken as the definition of floor and ceiling.
So

1. Let x is a real number, greatest integer number is a step function written as f(n)=[x], where f(n) is
the greatest integer less than or equal to x. [1.99]=1

2. Properties of G.I.F. Let x is a real number, then
a) x-1<[x]<=x
b) [x]<=x<[x]+1

3. Definition
Let x and y are two real numbers x, y ∈ |R and n is a natural number n ∈ |N, Then interval [x,y) can

be divided to N subinterval as [xi-1, xi

x
), i= 1, 2, … Where

0=x, xn=y, … , xi=x0

{ x= x
 + ih where h=((y-x) / N), then

0<x1<x2<…< x n-1<xn

[x, y) = [x
 = y } is a partition of [x, y).

0, x1) U [x1, x2) U … [x n-1, xn

= U
)

n
i=1[x i-1, xi

4. Definition
)

Let Ni is an arbitrary number in i th subinterval [x i-1 , xi

 x
) then

i-1 <= Ni < x
Theorem

i

Let x, y and Ni

i = [((N
 are arbitrary real number those designed in definition 4 , then

i

Proof :
 – x) / ((y – x) / N)) +1]

Ni is in ith subinterval then,
Ni ∈ [x i-1, xi) or x i-1 <= Ni < xi

X
 then

0 + (i-1)h <= Ni < x0

X + (i-1)h <= N
 + ih

i < x + ih

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 89

Since x0

(i-1)h <= N
 = x , then

i

(i-1) <=(N
 - x < ih
i

i <= ((N
 – x) / h < i

i

Using properties 2.a , one can write,
 – x) / h) + 1 < i+ 1

[((Ni

But h =((y – x) / N), then
 – x) / h) + 1] = i

i = [((Ni

i = Bucket No. that incoming packet is belongs to
 – x) / ((y – x) / N)) +1]

Ni

N= number of Cuts or partitions
= Packet (Cut Dimension) field

X= Bucket (Cut Dimension).Low
Y= Bucket (Cut Dimension).High
Bucket number = [(Packet (CutDimension) – Bucket (CutDimension).Low) / ((Bucket (CutDimension).High

– Bucket (CutDimension).Low) / Number of Cuts)] +1

Appendix C

Fig. 15. Find Cut Dimension – Pseudo Code.

Fig. 16. Initialize Buckets (nodes) – Pseudo Code.

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 90

Fig. 17. Split Buckets (nodes) – Pseudo Code.

Fig. 18. Search Packet – Pseudo Code.

Hediyeh AmirJahanshahi Sistani et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 02 Feb 2014 91

	Comparative evaluation of Recursive Dimensional Cutting Packet Classification, DimCut, with Analysis
	Abstract
	Keywords
	INTRODUCTION
	I. RELATED WORK
	II. HICUT AND DIMCUT ALGORITHMS
	III. EXPERIMENTAL METHODOLOGY
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

