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Abstract 

The main objective in this paper is to develop a mathematical model of the glucose to gluconic acid 
batch fermentation process utilizing novel techniques such as Genetic Programming and Artificial Neural 
Networks. Downloaded experimental data incorporating the effects of the substrate (glucose) and biomass 
concentrations, and the dissolved oxygen content have been used to model the fermenter. Three Genetic 
Programming variants: the GPLAB (a matlab toolbox), GP-OLS (a hybrid GP and Orthogonal Least Square 
method) and GP-Eureqa, as well as Multi-Layer Perceptron Neural Network have been used and compared.  
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I. Rationale 

The problem of discovering a mathematical expression that describes the operation of a physical 
system using empirically observed data measurements is an important problem in many scientific areas. 
Sometimes, there is no known mathematical way (or a solution in closed form) to explain relationships between 
involved input-output variables. This can lead to faulty mathematical expressions or models. 

For control engineers, modeling of a dynamic process is crucial and important because the process 
implements knowledge about structure and dynamics which are the starting point for the design and 
configuration of controllers.  

There are two different classes of process models, the structured mathematical model and the 
unstructured/ input-output models. The first type involves an assumption of a model which may be derived 
analytically and then determines parameters in order to carry out its operation (e.g. linear regressions,, 
linearized/non-linearized differential equations, transfer functions, etc). 

 In general, the creation of these mathematical models is difficult, time-consuming, and expensive. The 
second type requires relevant input and output variables only, and a computational search algorithm (e.g 
machine learning techniques and data mining). The more available data there is, the more accurate and efficient 
the model can be. Moreover, due to recent developments in evolutionary computation, these leaning techniques 
can be used to discover useful models even automatically. 

There are numerous application of GP in the field of process engineering: Mckay et.al (1996) modeled 
two continuous tank reactors in series; Willis et.al (1997) on binary vacuum distillation and screw cooking 
extruder; Greef and Aldrich (1997) on acid pressure leaching of nickelifrous chromites, and uranium and radium 
liberation models; Grossman et.al (2002) on modeling of a mixing tank; Grosman and Lewin (2004) on 
modeling of a Karr liquid-liquid extraction column; Chen (2003) on simultaneous zinc and lead imperial 
smelting process; Madar (2005) on identification of nonlinear systems;  Lew et.al (2006) on identification of 
response surface moldes; Cai et.al (2006) on heat transfer correlations with symbolic regression; Brezocnik 
(2006) on mathematical model to predict machinability of steel; Duda (2011) on tensile strength of cast iron and 
many others. 

GP performs symbolic regression, determining both the structure and the complexity of the model 
during its evolution. This has the advantage that no a priori modelling assumptions have to be made. Moreover, 
the technique can identify and separate relevant and irrelevant process inputs - yielding economical model 
structures that accurately represent process characteristics.  

This paper is an extension of a paper by Babu (2007). He noted that there are problems involved in 
modeling of glucose to gluconic acid bioprocess. The glucose to gluconic acid bioconversion using A. niger 
immobilized on the cellulosic micro fibrils involves reaction and mass transfer phenomena that leads to a 
complicated task since the physicochemical phenomena underlying the bioconversion and the associated kinetic 
and transport mechanisms are not well-understood. Aside from this, it has been observed that the process 
dynamics is nonlinear. The paper instead utilized genetic programming for symbolic regression, using GPLAB 
(a Matlab toolbox) and a hybrid GP and Orthogonal Least Square method (GP OLS).  It was concluded in the 
paper that GP OLS had the good prediction accuracy (i.e. high fitness values and low mean square error) and 
had generated simple parsimonious expressions.  
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This paper will focus on the performance of Eureqa, a third party freeware software that utilizes 
Genetic Programming, and then compare its performance with that of two popular Matlab Genetic programming 
toolboxes, the GPLAB and GP-OLS utilized by the abovementioned paper. Another popular freeware software 
called WEKA which contains a collection of visualization tools and algorithms for data analysis and predictive 
modeling was also used in order to carry out the multi-layer perceptron (MLP), a feedforward artificial neural 
network model. 

II. Theoretical Framework 

2.1 Genetic Programming 

Given a problem, the goal of genetic programming is to develop a computer program that can solve the 
particular problem. It starts with a population of randomly generated computer programs. Each program is run, 
and its performance is measured by a "fitness function", which reflects how good each program is at solving the 
problem. Then programs are chosen from the population to "reproduce, and the cycle continues, until a program 
with a certain level of fitness (i.e. a program that is good enough to solve the problem given) is found.  

The programs are chosen randomly, but with a weighting mechanism that makes it more likely that the 
more "fit" programs are chosen. After a full new population of programs is formed, the old population is 
discarded, and each of the new programs is run and their fitness is measured. The word "until" implies that such 
a state will be reached. The basic GP algorithm is similar to any evolutionary algorithms and works as follows. 

Algorithm GP Evolution: 

Step 1. Begin 

Step 2. Define pop-size as desired population size 

Step 3. Randomly initialize pop-size population 

Step 4. While (Ideal best found or certain number of generations met) 

o Evaluate fitness 

o While(number of children=population size) 

o Select parents 

o Apply evolutionary operators to create children 

o End while 

Step 5. End While 

Step 6. Return Best solution 

Step 7. End 

2.1.1 Solution Initialization 

The innovation of GP lies in the variable sized solution representation which requires efficient initial 
population construction.  Individuals are represented as trees constructed randomly from a primitive set. This 
primitive set contains functions and terminals. A tree’s internal nodes are selected from the functions and leaf 
nodes are selected from the terminals. Initialization plays an important role in success of an evolutionary 
algorithm. A poor initial population can cause any good algorithm to get stuck in local optima. On the other 
hand a good initialization can make most of the algorithms work sufficiently well. Three initialization 
techniques popular in tree based GP are full method grow method ramped half and half method 

2.1.2 Selection 

The evolutionary operators are applied on individuals particularly selected for that operation. The 
individuals are selected using a particular selection mechanism. Two of such mechanisms are tournament and 
fitness proportionate selection. 

2.1.3 Operators 

 The most common operators used for evolution of GP programs are crossover, mutation and 
reproduction.  

 Crossover operator works by selecting two parents from the population. Two random subtrees are 
selected from each parent and swapped to create children. Advancements have been made to pure random 
crossover operator 

in order to make it more efficient and propagate good building blocks among generations. The second operator 
is called mutation which has three types. In “point mutation” a single node in parent tree is selected and replaced 
with a random node of same type. “Shrink mutation” selects a node randomly and the subtree rooted at that node 
is replaced by a single terminal node. Laslty, “grow mutation” selects a random node and a randomly generated 
subtree is replaced by the subtree rooted at that node. 
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 Reproduction operator works by selecting an individual and copies ot directly to the new generation 
without any changes or modifications to it. 

2.1.4  Solution Fitness 

 Fitness is the performance of an individual corresponding to the problem it is aimed to solve. It tells 
which elements or the regions of the search space are good. The fitness measure steers the evolutionary process 
towards better approximate solutions to the problem. Fitness of individuals in a population can be measured in 

many ways. It can be measure of error between the original and desired output of a solution. It can be 
compliance of the structure to the task it is required to solve based on a user specified criteria. The difference 
between fitness evaluation in GP and other evolutionary algorithms is that each individual of GP is a program 
which needs recursive execution of the nodes of the tree in precise manner. This adds overhead to the algorithm 
increasing its evolution time and required computational sources. 

2.2 Artificial Neural Network 

 Artificial neural networks (ANN) have been developed as generalizations of mathematical models of 
biological nervous systems. A first wave of interest in neural networks emerged after the introduction of 
simplified neurons by McCulloch and Pitts (1943) also known as connectionist models. An Artificial Neural 
Network is a network of collections of very simple processors ("Neurons") each possibly having a (small 
amount of) local memory. The units operate only on their local data and on the inputs they receive via the 
connections or links which are unidirectional (Ajith, 2006). A network unit has a rule for summing the signals 
coming in and a rule for calculating an output signal that is then, sent to other network units. According to 
Callen the rules for calculating the output is known as the activation function (Zhi-Hua , 2007) 

 A neural network has three layers in its structure. First layer is input layer which is directly interact 
with external worlds; second layer is of hidden unit where computation is done according to function provided, 
the last layer is output layer from where we get output. Knowledge in neural networks is stored as synaptic 
weights between neurons. The network propagates the input data from layer to layer until the output data is 
generated.  

 If the networks is multilayer perceptron with Backpropogation algorithm and the output is different 
from the desire output, then an error is calculated and propagated backwards through the network. The synaptic 
weights are modified as the error is propagated (Fiona, 2001) 

2.2.1 Types Of Learning In Neural Networks  

 The first type is called supervised learning. In supervised learning networks inputs as well as 
corresponding output is given to the networks. In forward the errors or discrepancies between the desired and 
actual response for each node in the output layer are found. These are then used to determine weight changes in 
the net according to the prevailing learning rule. The term supervised originates from the fact that the desired 
signals on individual output nodes are provided by an external teacher. Examples of supervised learning are the 
delta rule, and the perceptron rule (Fauset, 1996) 

 The second is unsupervised learning. In this type of learning external teacher is not present. So this 
kind of learning is based upon clustering technique. According to inputs patterns clusters are divided into 
different classes. This kind of learning is also called self organization. Typical examples are the Hebbian 
learning rule and the competitive learning rule. Unsupervised learning is much more important then supervised 
learning since it likely to be much more common in the brain then supervised learning. The kind of learning is 
determined by the way in which the changes to network parameters have done. 

 Lastly, we have what we called reinforcement learning. This kind of learning is based upon both 
supervised and unsupervised learning. Reinforcement learning is learning what to do how to map situations to 
actions so as to maximize a numerical reward signal. In this learning there is reward for correct outputs and 
penalty for wrong outputs. Reinforcement learning is also called learning with a critic as opposed to learning 
with a teacher (Sutton, 1999) 
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III. Methodologies 

3.1. The Chemical Process 

In the work of Babu (2007) for the development of a GP based model for the glucose to gluconic acid 
bioprocess, experimental input-output data from the fermenter were used.  

A. Fermentation Medium for Immobilized Mycelia  

Anhydrous purified glucose (100 g), MgSO4â7H2O (0.035g), KH2PO4 (0.05 g), and 0.1 g of 
(NH4)2HPO4 were dissolved in 1 L of water. The pH of this medium was adjusted to 6.0 using 1MH2SO4. A 
woven cellulosic fabric support (69 _ 8.5 _ 0.6 cm) with void volume of approximately 140 mL was sterilized at 
15 psi for 60 min.  

B. Submerged Fermentation  

Submerged fermentation utilizing the immobilized culture was carried out in a modified locally 
fabricated batch fermenter. In the fermenter, the matrix with fully grown A. nigerwas folded in a spiral shape. 
For preventing mycelial recirculation, the upper end of the fixed bed was closed by the filter mesh. The batch 
reactor was drained after the substrate reached its lowest concentration.  

C. Maintaining Oxygen Partial Pressure  

A constant flow of air was used to maintain the oxygen partial pressure and a Dissolved Oxygen (DO) 
probe (Ingold, 170-ppm type DO amplifier) was used for measuring the dissolved oxygen concentration.  

D. Glucose and Gluconic Acid Analyses  

Feed and the unconverted glucose were analyzed by the dinitrosalicyclic acid method and the gluconic 
acid concentration in the bioreactor was measured by titrating against 6 N NaOH.  

The data set (see Table 1) comprises of glucose concentration (g/L), biomass concentration (g/L), and 
dissolved oxygen (DO) concentration (mg/L), and the corresponding process output variable, i.e., gluconic acid 
concentration (y).  
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Batch Glucose 
concentration 

(x1) 

Biomass 
concentration 

(x2)  

Dissolved 
Oxygen 

(x3) 

Gluconic Acid 
concentration 

(y) 
1 100 1 10 6.416 
2 150 2 10 48.015 
3 200 2 15 27.1 
4 150 2.5 15 57.946 
5 150 3 15 57.389 
6 120 2 25 36.262 
7 120 2 30 45.02 
8 150 2 30 94.424 
9 150 3 25 80.486 

10 150 2 40 128.907 
11 150 2 45 146.036 
12 150 2 50 154.23 
13 180 2 50 175.525 
14 150 3 40 129.006 
15 150 2.5 50 154.36 
16 150 2.5 55 152.44 
17 150 2.5 60 148.94 
18 160 2.5 60 163.067 
19 175 3 55 176.49 
20 160 3 60 162.42 
21 180 3 60 172.598 
22 150 3 60 151.28 
23 100 3 60 21.803 
24 100 2 10 6.67 
25 120 2.5 10 22.952 
26 100 2 15 7.829 
27 150 2 15 57.261 
28 120 2 20 31.486 
29 150 2 20 66.9 
30 150 2.5 20 67.449 
31 150  3 20 67.328 
32 150 2 35 111.328 
33 150 2.5 30 95.988 
34 150 3 30 94.707 
35 150 2.5 40 129.93 
36 150 3 35 111.604 
37 150 2 60 152.43 
38 120 2 60 73.502 
39 150 3 45 144.651 
40 180 2.5 55 179.064 
41 150 3 50 152.89 
42 180 2.5 60 174.483 
43 150 3 55 154.23 
44 166 3 60 169.45 
45 165 3 60 167.91 
46 162 3 60 164.87 

Table 1.  Experimental Data Utilized for Building GP Model 

3.4. Quality of Models 

There exists a large variety of measure values characterizing models qualities. Criteria like (a) error 
measures in the estimation and validation period (e.g mean squared error, mean absolute error, mean absolute 
percentage error, mean error, mean percentage error), (b) residual diagnostics and goodness-of-fit tests (e.g. 
plots of residuals versus time, versus predicted values, and versus other variables; residual autocorrelation plots,  
and normal probability plots; coefficients of skewness and kurtosis; measures of extreme or influential 
observations, etc), and (c) qualitative considerations (e.g. appearance of forecast plots, intuitive reasonableness 
of the model, simplicity of the model, etc)  

With so many plots and statistics and considerations to worry about, it's sometimes hard to know which 
comparisons are most important. If there is any one statistic that normally takes precedence over the others, it is 
the mean squared error (MSE) within the estimation period. This is the statistic whose value is minimized 
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during the parameter estimation process. The MSE equals the variance of the errors plus the square of the mean 
error (i.e: MSE = VAR(E) + (ME)2). Hence, to minimize mean squared error, means implicitly minimizing the 
bias, as well as the variance of the errors.  

Another famous and widely-used measure value is simply denoted by the so-called Mean Absolute 
Error (MAE). This is a common measure used to compare the prediction performance of different models. This 
criterion is generally referred to as predictability criterion. The MAE is the average magnitude of the errors in a 
set of forecasts over the verification sample of the absolute values of the differences between forecast and the 
corresponding observation. 

IV. Results and Discussion 

4.1.  The Model 

Table 2 below shows the Symbolic Regression models. The best symbolic regression function that was 
found on this data set is selected by choosing the function with the lowest Mean Square Error (MSE). This 
model has a Mean Square Error of 0.0012, as well as a Mean Absolute Error (MAE) of 0.0260. This chosen 
model is: 

(Gluconic Acid) = 2.231 + 25.34*(Dissolved Oxygen)^2 + 6.231*Glucose^2 + 2.646*Glucose*(Dissolved 
Oxygen) - 6.228*Glucose - 8.727*(Dissolved Oxygen) - 1.807*Glucose^3 - 26.05*(Dissolved Oxygen)^3 

 
Size 

Model Equation 
MSE MAE 

43 (Gluconic Acid) = 2.231 + 25.34*(Dissolved Oxygen)^2 + 6.231*Glucose^2 + 
2.646*Glucose*(Dissolved Oxygen) - 6.228*Glucose - 8.727*(Dissolved 
Oxygen) - 1.807*Glucose^3 - 26.05*(Dissolved Oxygen)^3 

0.0012 0.0260 

39 (Gluconic Acid) = 25.81*(Dissolved Oxygen)^2 + 2.814*Glucose*(Dissolved 
Oxygen) + 1.886*Glucose^2 - 0.6191 - 9.13*(Dissolved Oxygen) - 
0.8328*Glucose^3 - 26.38*(Dissolved Oxygen)^3 

0.0014 0.0273 

37 (Gluconic Acid) = 2.682*Glucose + 25.93*(Dissolved Oxygen)^2 + 
2.894*Glucose*(Dissolved Oxygen) - 1.838 - 9.28*(Dissolved Oxygen) - 
0.4067*Glucose^3 - 26.47*(Dissolved Oxygen)^3 

0.0016 0.0285 

35 (Gluconic Acid) = 5.22*Glucose + 26.04*(Dissolved Oxygen)^2 + 
2.966*Glucose*(Dissolved Oxygen) - 2.988 - 9.41*(Dissolved Oxygen) - 
1.792*Glucose^2 - 26.56*(Dissolved Oxygen)^3 

0.0018 0.0304 

5 (Gluconic Acid) = 1.781*Glucose*(Dissolved Oxygen) 0.0465 0.1711 

Table 2: The model equations according to the size with corresponding MSE, MAE, R-Square and No. of coefficients. 

It can be noted that genetic programming gives more than one equation to a given set of input output 
data, with varying mean square errors. This is somehow necessary for it presents user more choices to consider. 
For example, in the Eureqa model of size = 5, the variables “dissolved oxygen” and “glucose” are being just 
being multiplied. The rest of the models contain the same two variables that are being raised to the second and 
third powers. It seems like the variable biomass concentration has nothing to do in the outcome of the gluconic 
acid concentration - as being suggested by the data. 
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Search time:
2m 0s 

Generations:     15997
Generations/sec:

142.8 
 Formula evaluations 

3.2e8
 Evaluations/sec: 

2.78 M
Confidence  Stability 

9.4%
 Maturity:

13.4%

Figure 1: The mean absolute error (MAE) as a function of time, along with the number of generations, formula evaluations, confidence 
stability and maturity. 

The total calculations for the model of size 33 took a search time of 120 seconds. In this span of time, 
about 3.2 x 107 formula evaluations seconds were made with an MSE of 0.0465 (see Fig. 1.).   

4.2. Comparison with the other GP variants 

 Table 3 below shows how the eureqa model competes with that of two variants of matlab toolboxes 
GPLAB and GP-OLS and with Multi Layer Perceptron (MLP). 

Model Model Equation  
 y = f ( x1,x2,x3 )

MSE Time 
(secs)

GPLAB y  = mypower(times(times(mydivide(X1,mypower(times(mypower 
(times(X1,X3),minus(0.82359,minus(X1,mypower(X3,X1)))),times(minus(X1,minus(
0.47932,X3)),X3)),times(times(mydivide(X1,mypower(times(mypower(mypower(tim
es(X1,X3),minus(0.82359,minus(X1,X3))),minus(0.82359,minus(times(X3,X2),X3))),
times(minus(X1,minus(0.47932,X3)),X3)),times(X1,times(minus(0.82359,minus(0.47
932,X3)),X1)))),X3),times(minus(0.82359,minus(0.47932,X3)),X1)))),X3),times(minu
s(0.82359,minus(0.47932,X3)),X1)),0.38498) 

_ _ 

GP-OLS (2) y = -2.276953 * (x3) +2.323131 * ((x3)-exp((x1)-exp((x1)*exp(x3)))) + 0.888878 0.0320
6 

205 

GP-OLS (1) y = 0.517192 * ((x1)-exp(((x3)*exp((x3)*exp(x3)))*(((x3)-exp(x1))*(x3)))) + 
0.517702 

0.0275
9 

288 

Eureqa  (1) y = 2.231 + 25.34*(x3)^2 + 6.231*x1^2 + 2.646*x1*(x3) - 6.228*x1 - 8.727*(x3) - 
1.807*x1^3 - 26.05*(x3)^3 

0.0012  200  

MLP -ANN _ 27.22 16 

Table 4: The results of the three variants of GP (GP-Eureqa, GPLAB and GP-OLS) and Multi  Layer Perceptron (MLP-ANN) 

The first model, GPLAB has a very complicated equation and has no practical use. Two equations of 
the GP-OLS are less complex however; their mean square errors are 0.03206 and 0.02759 respectively. 
Comparatively, the eureqa model has the lowest mean square error stabilized at 0.0012. Since the mean squared 
error is comprised of the variance of the estimator and the squared bias; this means that the smaller the variance, 
the more precise the estimator is; and the smaller the bias, the more accurate the estimator is. Overall, the eureqa 
model is the most accurate and precise among the three GP variants. 

The multi layer perceptron model have a mean square error of 27.22, suggesting that it is not a good 
model in this particular chemical process. 
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Moreover, looking at the running time process, eureqa model have already come up with the best 
equation already after 120 seconds, compared to 205 and 288 for the GPLAB and GP-OLS respectively. 

V. Conclusion 

The aim of this study was to compare the three GP variants: GPLAB, GP-OLS and GP-Eureqa, 
together with a model created by an artificial neural network, as they attempt to create a mathematical model for 
the glucose and gluconic acid chemical process using the downloaded experimental data.  

The quality and reliability of the four models were evaluated via performance indicators (MSE and 
MAE). Assessment of model performance indicated that the eureqa model is the most accurate and precise 
among the four models.  

Aside from this, the eureqa model was able to converge to a very minimum mean square error less than 
two minutes time, suggesting further that the computational running time is much faster compared to GPLAB 
and GP-OLS matlab toolboxes.  
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Appendix 1. Eureqa Summary Report 

Model Observed vs. Predicted Output vs. Row Error/Complexity Pareto

Mod
el: 

(Gluconic 
Acid) = a + 
b*(Dissolved 
Oxygen)2 + 
c*Glucose2 + 
d*Glucose*(Di
ssolved 
Oxygen) - 
e*Glucose - 
f*(Dissolved 
Oxygen) - 
g*Glucose3 - 
h*(Dissolved 
Oxygen)3 

 

Mod
el: 

(Gluconic 
Acid) = 
a*(Dissolved 
Oxygen)2 + 
b*Glucose*(Di
ssolved 
Oxygen) + 
c*Glucose2 - d 
- e*(Dissolved 
Oxygen) - 
f*Glucose3 - 
g*(Dissolved 
Oxygen)3 
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Model Observed vs. Predicted Output vs. Row Error/Complexity Pareto

 

Mod
el: 

(Gluconic 
Acid) = 
a*Glucose + 
b*(Dissolved 
Oxygen)2 + 
c*Glucose*(Di
ssolved 
Oxygen) - d - 
e*(Dissolved 
Oxygen) - 
f*Glucose3 - 
g*(Dissolved 
Oxygen)3 

 

Mod
el: 

(Gluconic 
Acid) = 
a*Glucose + 
b*(Dissolved 
Oxygen)2 + 
c*Glucose*(Di
ssolved 
Oxygen) - d - 
e*(Dissolved 
Oxygen) - 
f*Glucose2 - 
g*(Dissolved 
Oxygen)3 

 

Mod
el: 

(Gluconic 
Acid) = 
a*Glucose2 + 
b*Glucose*(Di
ssolved 
Oxygen)2 - c - 
d*Glucose3 - 
e*(Dissolved 
Oxygen)4 

 

 

 

 

Appendix 2. Log Output 

TIME Fitness Equation 

2:31:27PM 0.0466 (Gluconic Acid) = 1.781*Glucose*(Dissolved Oxygen) 

2:31:27PM 0.0940 (Gluconic Acid) = 2.713*(Dissolved Oxygen) 

2:31:28PM 0.0092 (Gluconic Acid) = 7.824*Glucose + 4.071*Glucose*(Dissolved Oxygen) + 
0.1979*Biomass^2 - 4.995 - 0.04695*Biomass - 3.951*(Dissolved Oxygen) - 
0.6557*Glucose*Biomass -281*Glucose^2 
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2:31:28PM 0.0253 (Gluconic Acid) = 1.702*Glucose*(Dissolved Oxygen) + 0.9731*Glucose*Biomass - 
0.03697 - 0.08839*Biomass - 0.4798*(Dissolved Oxygen) - 0.2677*Biomass^2 - 
0.6239*Glucos 

2:31:29PM 0.0092 (Gluconic Acid) = 7.827*Glucose + 4.105*Glucose*(Dissolved Oxygen) + 
0.1925*Biomass^2 - 5.041 - 4.002*(Dissolved Oxygen) - 0.6697*Glucose*Biomass - 
2.276*Glucose^2 

2:31:29PM 0.0442 (Gluconic Acid) = Glucose*sin(2*(Dissolved Oxygen)) 

2:31:29PM 0.0348 (Gluconic Acid) = 1.089*Glucose*sin(2*(Dissolved Oxygen)) 

2:31:29PM 0.0340 (Gluconic Acid) = 1.013*Glucose*sin(2.292*(Dissolved Oxygen)) 

2:31:29PM 0.0342 (Gluconic Acid) = Glucose*sin(2.306*(Dissolved Oxygen)) 

2:31:29PM 0.0309 (Gluconic Acid) = 0.3508*Biomass + 0.1543*Glucose + 2.75*Glucose*(Dissolved 
Oxygen) - 0.4612 - 2.011*(Dissolved Oxygen) - 0.005714*Glucose*Biomass - 
0.06158*Biomass^2 

2:31:29PM 0.0064 (Gluconic Acid) = 0.04485*Biomass + 16.36*Glucose*(Dissolved Oxygen) - 
11.76*(Dissolved Oxygen) - 0.1472*Glucose^2 - 3.337*Glucose^2*(Dissolved 
Oxygen) - 1.737*Gluco2*(Dissolved Oxygen)^2 

2:31:30PM 0.0105 (Gluconic Acid) = 6.274*Glucose + 3.037*Glucose*(Dissolved Oxygen) + 
0.04708*Biomass^2 - 3.903 - 0.2643*Biomass - 2.443*(Dissolved Oxygen) - 
2.148*Glucose^2 

2:31:30PM 0.0104 (Gluconic Acid) = 6.417*Glucose + 0.2176*Biomass + 3.431*Glucose*(Dissolved 
Oxygen) - 4.443 - 3.022*(Dissolved Oxygen) - 0.1768*Glucose*Biomass - 
2.112*Glucose^2 

2:31:31PM 0.0253 (Gluconic Acid) = 1.765*Glucose*(Dissolved Oxygen) + 0.9477*Glucose*Biomass - 
0.1207 - 0.5729*(Dissolved Oxygen) - 0.2781*Biomass^2 - 0.613*Glucose^2 

2:31:31PM 0.0106 (Gluconic Acid) = 6.194*Glucose + 3.15*Glucose*(Dissolved Oxygen) - 4.108 - 
2.606*(Dissolved Oxygen) - 0.02872*Glucose*Biomass - 2.116*Glucose^2 

2:31:32PM 0.0312 (Gluconic Acid) = 0.157 + 3.142*Glucose*(Dissolved Oxygen) + 
0.053*Glucose*Biomass - 2.577*(Dissolved Oxygen) - 0.06336*Glucose^2 

2:31:32PM 0.0299 (Gluconic Acid) = 6.18*Glucose + 2.017*(Dissolved Oxygen) - 4.867 - 
0.0146*Glucose*Biomass - 1.763*Glucose^2 

2:31:32PM 0.0063 (Gluconic Acid) = 0.1564 + 16.6*Glucose*(Dissolved Oxygen) - 12.05*(Dissolved 
Oxygen) - 0.1765*Glucose^2 - 3.33*Glucose^2*(Dissolved Oxygen) - 
1.76*Glucose^2*(DissolvOxygen)^2 

2:31:33PM 0.0165 (Gluconic Acid) = 6.174*Glucose + 1.436*Glucose*(Dissolved Oxygen) - 4.516 - 
0.02891*Glucose*Biomass - 1.92*Glucose^2 

2:31:33PM 0.0108 (Gluconic Acid) = 5.944*Glucose + 3.126*Glucose*(Dissolved Oxygen) - 3.966 - 
2.607*(Dissolved Oxygen) - 2.055*Glucose^2 

2:31:34PM 0.0323 (Gluconic Acid) = 0.2192 + 3.19*Glucose*(Dissolved Oxygen) - 2.572*(Dissolved 
Oxygen) - 0.01722*Glucose^2 

2:31:34PM 0.0300 (Gluconic Acid) = 6.053*Glucose + 1.999*(Dissolved Oxygen) - 4.792 - 
1.733*Glucose^2 

2:31:35PM 0.0168 (Gluconic Acid) = 5.922*Glucose + 1.412*Glucose*(Dissolved Oxygen) - 4.373 - 
1.859*Glucose^2 

2:31:35PM 0.0318 (Gluconic Acid) = 0.1378*Glucose + 2.806*Glucose*(Dissolved Oxygen) - 
2.045*(Dissolved Oxygen) 

2:31:37PM 0.0457 (Gluconic Acid) = 0.06562 + 1.693*Glucose*(Dissolved Oxygen) 

2:31:37PM 0.0052 (Gluconic Acid) = 3.696*Glucose + 6.874*Glucose*(Dissolved Oxygen) - 2.379 - 
5.347*(Dissolved Oxygen) - 1.463*Glucose^2 - 1.657*Glucose^2*(Dissolved 
Oxygen)^2 

2:31:39PM 0.0323 (Gluconic Acid) = 0.1851 + 3.086*Glucose*(Dissolved Oxygen) - 2.426*(Dissolved 
Oxygen) 

2:31:39PM 0.0204 (Gluconic Acid) = 3.321*Glucose*(Dissolved Oxygen) - 0.1878 - 3.843*(Dissolved 
Oxygen)^2 

2:31:40PM 0.0108 (Gluconic Acid) = 5.944*Glucose + 3.126*Glucose*(Dissolved Oxygen) - 3.966 - 
2.607*(Dissolved Oxygen) - 2.055*Glucose^2 
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2:31:40PM 0.0078 (Gluconic Acid) = 4.522*Glucose + 3.163*Glucose*(Dissolved Oxygen) - 3.299 - 
1.584*Glucose^2 - 3.529*(Dissolved Oxygen)^2 

2:31:41PM 0.0077 (Gluconic Acid) = 4.678*Glucose + 3.145*Glucose*(Dissolved Oxygen) - 3.36 - 
0.02666*Biomass - 1.632*Glucose^2 - 3.464*(Dissolved Oxygen)^2 

2:31:41PM 0.0075 (Gluconic Acid) = 4.773*Glucose + 3.408*Glucose*(Dissolved Oxygen) - 3.356 - 
0.8382*(Dissolved Oxygen) - 1.695*Glucose^2 - 2.913*(Dissolved Oxygen)^2 

2:31:45PM 0.0178 (Gluconic Acid) = 3.032*Glucose*(Dissolved Oxygen) - 0.2346 - 5.103*(Dissolved 
Oxygen)^3 

2:31:46PM 0.0124 (Gluconic Acid) = 6.675*Glucose + 0.9115*Glucose^2*(Dissolved Oxygen) - 4.595 - 
2.257*Glucose^2 

2:31:46PM 0.0075 (Gluconic Acid) = 2.304*Glucose + 3.121*Glucose*(Dissolved Oxygen) - 2.293 - 
3.468*(Dissolved Oxygen)^2 - 0.3643*Glucose^3 

2:31:46PM 0.0045 (Gluconic Acid) = 2.82*Glucose + 7.91*Glucose*(Dissolved Oxygen) - 1.677 - 
7.058*(Dissolved Oxygen) - 1.189*Glucose^2 - 0.9981*Glucose^3*(Dissolved 
Oxygen)^2 

2:31:47PM 0.0067 (Gluconic Acid) = 16.27*Glucose*(Dissolved Oxygen) - 0.09693 - 10.22*(Dissolved 
Oxygen) - 3.354*(Dissolved Oxygen)^3 - 4.551*Glucose^2*(Dissolved Oxygen) 

2:31:47PM 0.0066 (Gluconic Acid) = 4.544*Glucose + 5.031*Glucose*(Dissolved Oxygen) - 3.084 - 
2.967*(Dissolved Oxygen) - 1.684*Glucose^2 - 2.212*Glucose*(Dissolved Oxygen)^2 

2:31:48PM 0.0063 (Gluconic Acid) = 4.651*Glucose + 3.399*Glucose*(Dissolved Oxygen) - 3.223 - 
1.566*(Dissolved Oxygen) - 1.653*Glucose^2 - 3.07*(Dissolved Oxygen)^3 

2:31:50PM 0.0045 (Gluconic Acid) = 2.681*Glucose + 4.757*(Dissolved Oxygen)^2 + 
4.242*Glucose*(Dissolved Oxygen)^2 - 2.446 - 0.364*Glucose^3 - 13.32*(Dissolved 
Oxygen)^3 

2:31:50PM 0.0042 (Gluconic Acid) = 0.413 + 18.59*(Dissolved Oxygen)^2 + 16.11*Glucose*(Dissolved 
Oxygen) - 15.96*(Dissolved Oxygen) - 4.518*Glucose^2*(Dissolved Oxygen) - 
20.4*(Dissod Oxygen)^3 

2:31:50PM 0.0034 (Gluconic Acid) = 3.085*Glucose + 6.682*Glucose*(Dissolved Oxygen) - 1.827 - 
6.294*(Dissolved Oxygen) - 1.258*Glucose^2 - 0.6046*Glucose^4*(Dissolved 
Oxygen)^3 

2:31:50PM 0.0046 (Gluconic Acid) = 2.812*Glucose + 7.791*Glucose*(Dissolved Oxygen) - 1.695 - 
Glucose^3*(Dissolved Oxygen)^2 - 6.833*(Dissolved Oxygen) - 1.182*Glucose^2 

2:31:51PM 0.0041 (Gluconic Acid) = 4.027*Glucose + 20.24*(Dissolved Oxygen)^2 + 
14.85*Glucose*(Dissolved Oxygen) - 1.869 - 17.48*(Dissolved Oxygen) - 
1.889*Glucose^2 - 15.88*Glucose*ssolved Oxygen)^2 

2:31:51PM 0.0046 (Gluconic Acid) = 2.801*Glucose + 7.772*Glucose*(Dissolved Oxygen) - 1.712 - 
Glucose^3*(Dissolved Oxygen)^2 - 6.805*(Dissolved Oxygen) - 1.169*Glucose^2 

2:31:52PM 0.0018 (Gluconic Acid) = 5.22*Glucose + 26.04*(Dissolved Oxygen)^2 + 
2.966*Glucose*(Dissolved Oxygen) - 2.988 - 9.41*(Dissolved Oxygen) - 
1.792*Glucose^2 - 26.56*(Dissolvedygen)^3 

2:31:52PM 0.0016 (Gluconic Acid) = 2.682*Glucose + 25.93*(Dissolved Oxygen)^2 + 
2.894*Glucose*(Dissolved Oxygen) - 1.838 - 9.28*(Dissolved Oxygen) - 
0.4067*Glucose^3 - 26.47*(DissolvOxygen)^3 

2:31:52PM 0.0341 (Gluconic Acid) = Glucose*sin(2.345*(Dissolved Oxygen)) 

2:31:52PM 0.0046 (Gluconic Acid) = 2.814*Glucose + 7.793*Glucose*(Dissolved Oxygen) - 1.71 - 
Glucose^3*(Dissolved Oxygen)^2 - 6.838*(Dissolved Oxygen) - 1.178*Glucose^2 

2:31:53PM 0.0014 (Gluconic Acid) = 25.81*(Dissolved Oxygen)^2 + 2.814*Glucose*(Dissolved Oxygen) 
+ 1.886*Glucose^2 - 0.6191 - 9.13*(Dissolved Oxygen) - 0.8328*Glucose^3 - 
26.38*(Dissed Oxygen)^3 

2:31:53PM 0.0046 (Gluconic Acid) = 2.806*Glucose + 7.764*Glucose*(Dissolved Oxygen) - 1.719 - 
Glucose^3*(Dissolved Oxygen)^2 - 6.816*(Dissolved Oxygen) - 1.165*Glucose^2 

2:31:53PM 0.0012 (Gluconic Acid) = 2.231 + 25.34*(Dissolved Oxygen)^2 + 6.231*Glucose^2 + 
2.646*Glucose*(Dissolved Oxygen) - 6.228*Glucose - 8.727*(Dissolved Oxygen) - 
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1.807*Glucose^26.05*(Dissolved Oxygen)^3 

2:31:53PM 0.0264 (Gluconic Acid) = Glucose*sin(Glucose^2*(Dissolved Oxygen)) 

2:31:53PM 0.0255 (Gluconic Acid) = 1.026*Glucose*sin(Glucose^2*(Dissolved Oxygen)) 

2:31:54PM 0.0041 (Gluconic Acid) = 5.236*Glucose + 4.764*Glucose*(Dissolved Oxygen)^2 - 3.575 - 
1.719*Glucose^2 - 11.65*(Dissolved Oxygen)^4 

2:31:54PM 0.0038 (Gluconic Acid) = 2.807*Glucose + 4.716*Glucose*(Dissolved Oxygen)^2 - 2.465 - 
0.3929*Glucose^3 - 11.52*(Dissolved Oxygen)^4 

2:31:55PM 0.0037 (Gluconic Acid) = 2.009*Glucose + 4.667*Glucose*(Dissolved Oxygen)^2 - 1.921 - 
0.1317*Glucose^4 - 11.4*(Dissolved Oxygen)^4 

2:31:55PM 0.0036 (Gluconic Acid) = 1.976*Glucose^2 + 4.662*Glucose*(Dissolved Oxygen)^2 - 1.176 - 
0.8422*Glucose^3 - 11.38*(Dissolved Oxygen)^4 

2:32:09PM 0.0341 (Gluconic Acid) = Glucose*sin(2.334*(Dissolved Oxygen)) 

2:32:11PM 0.0341 (Gluconic Acid) = Glucose*sin(2.339*(Dissolved Oxygen)) 

2:32:15PM 0.0457 (Gluconic Acid) = Glucose + 2.079*(Dissolved Oxygen) - 1.213 

2:32:21PM 0.0415 (Gluconic Acid) = 0.189 + Glucose^2*(Dissolved Oxygen) 

2:32:23PM 0.0174 (Gluconic Acid) = 0.0008281 + 4.783*sin(Glucose*(Dissolved Oxygen)) - 
3.799*(Dissolved Oxygen) 

2:32:48PM 0.0118 (Gluconic Acid) = 0.1335*Glucose + 10.23*Glucose*(Dissolved 
Oxygen)*sin(Glucose) - 8.58*Glucose*(Dissolved Oxygen) 

2:32:55PM 0.0408 (Gluconic Acid) = 0.1768 + Glucose^2*(Dissolved Oxygen) 

2:32:55PM 0.0130 (Gluconic Acid) = 0.16 + 10.72*Glucose*(Dissolved Oxygen)*sin(Glucose) - 
9.005*Glucose*(Dissolved Oxygen) 

2:33:27PM STOPPED  
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