
WEB APPLICATION SECURITY -
CROSS-SITE REQUEST FORGERY

ATTACKS
RadhaRani Sankuru

Pursuing M.tech (CSE),
Vasireddy Venkatadri Institute of Technology, Affiliated To JNTUK,

Nambur, Guntur, Kakinada, AP, India.

MadhuBabu Janjanam
Asst. Professor, Department of Computer Science Engineering,

Vasireddy Venkatadri Institute of Technology, Affiliated To JNTUK,
Nambur, Guntur, Kakinada, AP, India.

Abstract—Cross-Site Request Forgery (CSRF) is an attack outlined in the OWASP Top 10 whereby a
malicious website will send a request to a web application that a user is already authenticated against
from a different website. This way an attacker can access functionality in a target web application via the
victim's already authenticated browser. Targets include web applications like social media, in browser
email clients, online banking, and web interfaces for network devices.

As browser holds valid session information of each request, a browser is the first place to look for attack
symptoms and take actions. Current client side detection methods allow performing request to a trusted
website by white listed third party websites. These approaches are not effective if policies are specified
incorrectly, they do not focus on all the requests and cross check of response content type.

To overcome these limitations, we acquaint a client side detection mechanism for the CSRF attack. Our
approach relies on concept of a unique CSRF token which tends to change for each and every request. We
can do that by using a unique number generator to generate the token. Then we try to match the token in
the user's session data and invalidate it when we see it as a match or no token at all. This makes the token
a used once. This protects us against repeated attacks. Moreover to overcome an attacker’s attempt to
circumvent form visibility checking, we compare the response content type of a suspected request with
the expected content type.

The current approach detects CSRF attacks through HTML form submissions and other source of
requests that might cause program state retrieval or modification which is compatible to latest versions of
popular browsers such as IE, Firefox, and Chrome.

 As proposed approach checks all the requests which might change program state and compatible to
popular browsers this approach can reduce the CSRF attacks by detecting the significant number of
attack requests, hence our evaluation results indicate that our approach can detect most of the common
form of CSRF attacks.

Keywords- Browser security, client-side attack detection, cross site request forgery, cross-site scripting,
OWASP.

I. INTRODUCTION

CSRF is web application vulnerability where a malicious web site can make legitimate requests to a
vulnerable web site under the disguise of a logged-in user without that user’s knowledge. This vulnerability has
been rated as one of OWASP (Open Web Application Security Project) Top 10 vulnerabilities – A5, and
Common Weakness Enumeration (CWE – 352).

Cross Site Request Forgery (also known as XSRF, CSRF, and Cross Site Reference Forgery) works by
exploiting the trust that a site has for the user. Site tasks are usually linked to specific URLs allowing specific
actions to be performed when requested. If a user is logged into the site and an attacker tricks their browser into
making a request to one of these task URLs, then the task is performed and logged as the logged in user.
Typically an attacker will embed malicious HTML or JavaScript code into an email or website to request a
specific 'task URL' which executes without the users knowledge, either directly or by utilizing a Cross-site
Scripting Flaw. These sorts of attacks are fairly difficult to detect potentially leaving a user debating with the
website/company as to whether or not the stocks bought the day before was initiated by the user after the price
plummeted.

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1194

We develop a detection framework for CSRF attacks by using a unique identifier named CSRF token
for each and every request. It is independent of any cross-origin policy. Moreover, the approach can detect
attacks where requests contain partial information or request with no query strings and which intend to change
server side program states.

We can find example of CSRF attack in the below code snippets in java program in Figure 1 (jsp a
client side view) and Figure 2 (request processing server side content). Let us assume that a user is logged on to
a site (www.abc.com) that has product information to be sent to user via email. The send details page includes a
contact email address with value as user@abc.com. The client side interface (Figure 1) provides a view
(sendDetails.jsp) to set the new email address of a logged on user to send the product details. A new email
address provided by a user (Line 5) is updated by the server side code (i.e., the ProductDetailsController.java at
Line 3). The request of the email address change is sent to ProductDetailsController.java by a hidden field
(toEmail) at Line 4.

1. <HTML>
2. <BODY>
3. <FORM action = “prodDetails” method = “POST”>
4. <INPUT type = “hidden” name = “action” value = “toEmail”>
5. <INPUT type = “text” name = “emailAddr” value = “”>
6. <INPUT type = “submit” value = “SendProductDetails”>
7. </FORM>
8. <BODY>
9. </HTML>

Figure 1. Client side code (sendDetails.jsp)

1.if (session.getAttribute(“UserInfo”)!=null){
2.if(request.getParameter(“action”) !=null && (String)
request.getParameter(“action”).equalsIgnoreCase(“toEmail”)){
3.if(request.getParameter(“emailAddr”) !=null){
4. sendProductDetails((String) request.getParameter(“emailAddr”));
5.}
6.}else{
7. log.error(“Invalid session!”);
8. response.sendRedirect(“error.jsp”);

Figure 2. Server side code (ProductDetailsController.java)

At server side in ProductDetailsController.java checks whether the user session is valid, if not system
will redirect to the error page and if yes, the request is processed and update system state by sending product
details to the user’s new email Id. If user request sends the email then the HTTP request becomes
http://www.abc.com/sendDetails?action= toEmail & emailAddr=user2@abc.com.

Let us assume that the user is logged on to www.abc.com as well as visiting another site that contains a
hyperlink http://www.abc.com/ sendDetails?action= toEmail & emailAddr=attacker@abc.com. If the user
clicks on the link, the contact email address is changed to attacker@abc.com. The user becomes a victim of a
reflected CSRF attack.

II DETECT CSRF ATTACK

This paper mainly deals with reflected CSRF attack, the attack payloads reside in third party websites
that are vulnerable to XSS. Some of the approaches have been dealt with a unique CSRF token which needs the
change in server side program code to implement. As this approach of handling CSRF attacks wraps the client
side code we can avoid attacks earlier.

This approach uses a unique CSRF token for each and every request by considering different types of
requests specified. Whenever an authorized user requests the website, each valid request is appended with
unique CSRF token and this token will be stored in session data and this valid request will be processed at
server side.

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1195

 When CSRF attack request passes the request to the website, as an attacker is not aware of CSRF
token the request will not be appended with token, hence in the token verification process the request will be
rejected and not processed. If the attacker guesses the token, in the token validation process the request token
will be validated for the format, if not matches the request will be rejected and not processed.

If the request matches the format and matches with the set of stored CSRF tokens then the request will
be rejected hence it protects us against replay attacks (since the number is only valid on the first submission), In
replay attacks the attacker watch the original request so they can steal the request payload. Then, they can re-
submit the request while altering form data to do what they want. If the request token is valid and not matching
with existing tokens then request will be cross checked for the response content type with the expected values,
if matching then request will be processed else not.

The overview of CSRF Detection method is shown in Figure 3 and Figure 4.

Figure 3. Overview of Cross Site Request Forgery Attack Detection method.

 CSRF UNIQUE TOKEN GENERATOR

 This module intercepts each and every request raised by the authenticated user and appends the unique CSRF
token with a unique format. This includes most possible ways of raising the request example, through links or
URLs, Ajax call, form submission by buttons, image links etc. The unique format includes a combination of
session id and request time as timestamp whenever request sent by the client. This combination makes the CSRF
token unique for each and every request.

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1196

Figure 4. CSRF Token verification and validation process.

TOKEN VERIFICATION AND VALIDATION

When CSRF attack request passes the request to the website, as an attacker is not aware of CSRF token
the request will not be appended with token, hence in the token verification process the request will be rejected
and not processed. If the attacker guesses the token, in the token validation process the request token will be
validated for the format, if not matches the request will be rejected and not processed.

If the request matches the format and matches with the set of stored CSRF tokens then the request will
be rejected hence it protects us against replay attacks (since the number is only valid on the first submission), In
replay attacks the attacker watch the original request so they can steal the request payload. Then, they can re-
submit the request while altering form data to do what they want.

If the request token is valid and not matching with existing tokens then request will be cross checked
for the response content type with the expected values, if matching then request will be processed else not.

CONTENT TYPE CHECK

It consists of the mapping between expected HTML tag attributes containing requests and the list of
expected content types and their related URL attributes using JSON.

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1197

III EVALUATION RESULTS

Table I. shows a summary of the total number of requests raised for each of the programs, the number
of GET and POST requests, the number of requests that retrieve information from program session or database,
the Number of requests that modify program session (e.g., logout) or database (e.g., add a project), and the
average number of hidden and non-hidden parameters.

TABLE I. TEST SUITE

Program
name

Total
request

GET

POST

Retrieve

Modify

Avg. hidden

Avg. non
hidden

Java
Program1

 50

 30

 20

 27

 23

 4

 9

Java
Program2

 40

 10

 30

 10

 30

 2

 8

RESULTS:

Table I shows the summary of the test attacks for the two java programs. Columns 2-7 show the detection result
for the three test modes (window and no form, window and form without value, and window and form with
value). For each test mode, we note that our approach generates warnings and stops all the attacks (denoted as
x/y, where x is the number of attack test cases and y is the number of test cases detected) for program state
retrieval (ret.) and modification (mod.) related URLs.

Requests through links: We keep a webpage of a program under test that has hyperlinks to raise the request to
the server (e.g., pages having links to get results, which modifies the state). To emulate reflected CSRF attacks,
all test scripts (or attack web pages) are placed in a separate web server. We visit attack web pages and observe
whether our approach generates any warning or not.

Requests through Ajax calls: In this mode, we traverse a program to reach a randomly chosen page having Ajax
call. We provide input to form fields and we emulate reflected CSRF attacks by visiting the attack web pages
from a different window.

Requests through form fields or button: In this mode, we first visit pages that contain forms. Moreover, these
pages provide the options to add, edit, or remove information. We provide inputs in forms for modification
related operations (e.g., add) that match with attack requests appropriately. Note that this test mode excludes all
the retrieval related requests.

TABLE II. CSRF ATTACK DETECTION SUMMARY

Program

name

 Requests through links

 Requests through Ajax

calls

 Requests through form

 fields or button

 Ret. Mod. Ret. Mod. Ret. Mod.
Java
Program1

 27/27

 23/23

 27/27

 23/23

 N/A

 23/23

Java
Program2

 10/10

 30/30

 10/10

 30/30

 N/A

 30/30

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1198

TABLE III. COMPARISON SUMMARY OF CSRF ATTACK DETECTION WORKS

The approach [1] initially intercepts an HTTP response and identifies active URL links, followed by
adding random tokens and saving the modified URLs. Next, if an HTTP request is intercepted, the saved URLs
are matched with the current URL. If no match is found, an attack is detected. Otherwise, they remove cookie or
sensitive information present in a request. This forces a user to re-login a website.

Several server side approaches are applied to detect CSRF attacks. The CSRFGuard [5] adds filters in
web servers that host programs vulnerable to CSRF attacks. A filter maps between resources (e.g., a server side
web page) and the corresponding code that intercepts HTTP requests to detect CSRF attacks. The response page
is searched for HTML forms and links, and inserted with appropriate unique token parameter values and stored
in a session table. For a new request, the value of a token parameter is compared with the saved token. If there is
no match, the request is considered as a CSRF attack.

The approach [9], encode the behavior of a web application by deterministic finite automaton (DFA).
In DFA, a state is a server-side script and state transitions occur through HTTP requests. The hyperlinks and
forms contained in each web page determine the set of valid requests that a user may issue in that state. A CSRF
attack is a deviation between a set of known valid requests and an actual request not applicable for a state.

IV. CONCLUSIONS AND FUTURE WORK

Current client side detection methods allow performing request to a trusted website by white listed
third party websites. These approaches are not effective if policies are specified incorrectly, they do not focus on
all the requests and cross check of response content type. Some of the approaches have been dealt with a unique
CSRF token which needs the change in server side program code to implement. As this approach of handling
CSRF attacks wraps the client side code we can avoid attacks earlier.

This paper proposes the detection of CSRF attacks is a mechanism to intercept a suspected each and
every request using a unique identifier named CSRF token. Moreover, the approach can detect attacks where
requests contain partial information or request with no query strings and which intend to change server side
program states.

The experimental results show that the approach suffers from zero false positive and negative rates for
attack requests that retrieve or modify program states.

Moreover, our approach enables a user to specify detection policy based on the user’s needs. We also
contribute to the development of a test suite to perform the evaluation using several real world vulnerable
programs.

Work

Reflected

CSRF
Stored
CSRF

Response
content

type check
Deployment

location
Modification
of response

Information
added/removed GET POST

Johns and
others. [1] Yes No No Client URL

Add random
token Yes Yes

Barth and
others. [2] Yes No No Client None

Add HTTP
origin header No Yes

Mao and
others. [3] Yes No No Client None remove cookie Yes Yes
Maes and
others. [4] Yes No No Client None remove cookie Yes Yes
CSRFGuard
[5] Yes No No Server URL

Add unique
token Yes Yes

Zeller and
others. [6] Yes No No

Client and
Server

Form field
and cookie

Add random
number No Yes

Ryck and
others. [7] Yes Yes No Client None remove cookie Yes Yes
Jovanovic and
others.[8] Yes No No Server URL

Add unique
token Yes Yes

Jayaraman
and others.[9] Yes Yes No Server None None Yes Yes

Our work Yes No Yes Client None
Add unique
token Yes Yes

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1199

The current approach considers HTML form submissions as the primary source of state modification or
retrieval to server side programs by different means of approaches. Thus, we plan to detect CSRF attacks
through other source of requests that might cause program state retrieval or modification.

Our future work includes detection of complex attacks and the evaluation of performance penalties for
legitimate requests.

V. REFERENCES
[1] Category: OWASP CSRFGuard Project, http://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
[2] Threat Risk Modeling, http://www.owasp.org/ index.php/Threat_Risk_Modeling
[3] Lin, X.L., Zavarsky, P., Ruhl, R., Lindskog, D.: Threat Modeling for CSRF Attacks. In: the 2009 International Conference on

Computational Science and Engineering, Vancouver (2009) In: BruCON Security Conference 2010, Brussels (2010)
[4] Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A Solution for the Automated Detection of Clickjacking Attacks. In:

5th ACM Symposium on Information, Computer and Communications Security, New York (2010)
[5] Mao, Z.Q., Li, N.H., Molloy, L.: Defeating Cross-Site Request Forgery Attacks with Brower-Enforced Authenticity Protection. In:

International Conference on Finance Cryptography and Data Security, (2009)
[6] CSRF Guard Testing, http://pentesterconfessions.blogspot.com/2008/06/csrfguard-testing_05.html
[7] HTTP 1.1, http://tools.ietf.org/html/rfc2068
[8] Vialy Shmatikov. Web browser security, http://www.cs.utexas.edu/~shmat/courses/cs380s/12browser.ppt
[9] CSRFGuard 3 Configuration, http://www.owasp.org/index.php/CSRFGuard _3_Configuration
[10] Ryck, P.D., Desmet, L., Heyman, T., Piessens, F., Joosen, W. : CsFire:Transparent client-side mitigation of malicious cross-domain

requests.
[11] A look at the ‘Clikcjacking’ Web Attack and Why You Should Worry,

http://www.webmonkey.com/2008/10/a_look_at_the_clickjacking web_attack_and_why_you_should_worry/
[12] Son, S.: Prevent Cross-site Request Forgery: PCRF.
[13] CSRF Guard 3 token injection, http://www.owasp.org/index.php/CSRFGuard_3_Token_Injection

RadhaRani Sankuru et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1200

	WEB APPLICATION SECURITY -CROSS-SITE REQUEST FORGERYATTACKS
	Abstract
	Keywords
	I. INTRODUCTION
	II DETECT CSRF ATTACK
	III EVALUATION RESULTS
	IV. CONCLUSIONS AND FUTUREWORK
	V. REFERENCES

