
An Approach to Memory management in
Wireless Sensor Networks

Prof. Manjiri Pathak
Associate Prof., Computer Dept.,

Padm. Vasantdada Patil Pratishthan's College of Engg, Sion,
Mumbai, India,

manjiri_pathak@yahoo.com

Abstract— In recent years, wireless sensor network has become an important research domain. A typical
WSN is a multi-hop wireless network consisting of hundreds or thousands of small sensor devices that are
capable of sensing, processing (computing), and communicating. Nowadays WSNs represent a new
generation of distributed embedded systems with a broad range of real-time applications. Some of the
applications include process control, fire monitoring, border surveillance, medical care, asset tracking,
agriculture, highway traffic coordination etc. Such systems need heavy computations & must meet new
kinds of timing constraints under severe resource limitations & limited communication capabilities in
highly dynamic environments.
In WSN, sensor devices are severely constrained by the resources. They usually consist of a processing
unit with limited computational power & limited memory, sensors (including specific conditioning
circuitry), a communication device (usually a radio transceiver or alternatively optical) and a power
source in the form of a battery. As many of the new applications supporting real time traffic require more
memory, it is challenging to design the efficient memory management techniques to support these
applications. Although great amount of work is done in this area, still many problems have to be resolved.
Especially there are many research gaps in case of memory management for WSN in supporting
concurrent applications. In this paper we will discuss about the challenges to be considered while
designing the efficient memory management system for these kind of applications & how these issues are
handled in various OSs designed for this purpose. Next, we will also consider the further research
opportunities in this area.

Keywords- Wireless Sensor Network (WSN), WSN operating systems, Memory management, Wireless
Multimedia Sensor Networks (WMSN), WSN-cloud computing, challenges, research opportunities.

I. INTRODUCTION
Infrastructural support for WSN applications in the form of operating systems is becoming increasingly
important. It bridges the gap between hardware simplicity and application complexity, and it plays a central role
in building scalable distributed applications that are efficient and reliable. One of the important OS design issues
which requires lot more attention is memory management in WSN.
Memory in current sensor nodes consists of: RAM (for fast data storage), internal flash (for code storage),
EEPROM (for data storage), and external flash which is required for data persistence.
In a traditional operating system, memory management refers to various techniques used for allocation and de-
allocation of memory blocks to different processes and threads. Commonly used memory management
techniques are static memory allocation & dynamic memory allocation. Earlier, very little or no support used to
be provided for managing the memory assuming that only single application runs on the sensor node. But with
the emergence of new application domains for WSNs which support real time traffic, multithreaded, multi core
designs, multimedia streams of data for transfer, these WSNs provide the mechanism for concurrent execution
of multiple threads[4]. Since the memory is one of the constrained resource in case of WSN, it becomes a
challenging task for applying these memory management techniques efficiently to various processes & threads
with real time traffic. In the next section, we will see various issues & challenges relevant to memory
management in WSN. Section III consists of the features & an approach of various WSN operating systems to
the memory management. Section IV elaborates more about the research gaps & opportunities to contribute the
work further in this area. The paper concludes with summary & conclusion.

II. MEMORY MANAGEMENT ISSUES & CHALLENGES
There are many issues & challenges that should be considered while designing efficient memory management
system. In this section, we will see some of the major concerns in this area.

Prof. Manjiri Pathak / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1171

mailto:manjiri_pathak@yahoo.com�

i. Virtual memory
Many of the sensor nodes lack or have very limited support for the address translation(MMU). As it is power
intensive operation & sensor nodes have very limited power & storage capabilities, it is really challenging to
provide more memory to the applications than assigned by the physical memory. Especially the work done
in virtual memory management for WSN is very limited.[2]

ii. Secondary storage management
As many emerging WSN applications require more memory, and these applications require management of
large databases & real time traffic, the need for secondary storage increases. In these types of applications,
data must be stored in the network, and thus storage becomes a primary resource which, in addition to
energy, determines the useful lifetime and coverage of the network. There are only few OSs that provide a
file system to manage secondary storage. So the scalable(distributed) file system for WSNs to manage
secondary storage has to be designed for such applications. The collaborative storage provides more
suitability to meet the goals of storage management.

iii. Small Footprint
The storage capacity available on a sensor node is in terms of few kilobytes due to which the OS has to be
designed with a very small footprint[15]. It is a fundamental characteristic of a sensor Operating System.

iv. Task Scheduling & resource sharing
It provides the task environment for executing long running application. The task scheduling can be either
event-driven or multi-threaded. Here also memory management should be done in efficient way for memory
allocation between scheduled tasks. Another issue to be considered is the resource sharing between execution
of multiple applications. For this, the efficient concurrency control & memory protection mechanism should
be provided between these applications.

v. Dynamic memory allocation
Data memory has been a very scarce resource in sensor networks[2]. Thus, its efficient utilization is
necessary. Allocation of a memory to the dynamic data structures becomes a challenging task on the sensor
node as the memory requirement varies depending on the size of the data structure. WSN applications with
increasing application domains require efficient dynamic memory allocation techniques to be designed.

vi. Reprogramming & memory management
Reprogramming & up-gradation of soft wares on already deployed nodes is challenging because of the fact
that sensor networks may be deployed in physically unattended environment and often consist of few
thousands of nodes. Therefore, an already deployed sensor network must be wirelessly reprogrammable
irrespective of above problems[2].
Reprogramming requires dynamic loading & unloading of the software modules or individual services &
proper memory management policies like contiguous memory allocation, de-allocating memory, and
paging[3]. For these policies to be enforced, proper APIs should be provided by OS to support
reprogramming.

In the next section, we will see how the memory management approach is handled in various WSN operating
systems.

III. MEMORY MANAGEMENT APPROACH IN WSN OPERATING SYSTEMS
In this section, we will see how these issues are handled in various operating systems designed for WSN.
a. TinyOS
• In early sensor network operating systems like TinyOS there was no memory management available(or

little support in case of new version) assuming the execution of single application on a sensor node.
Because of this, there was no support for real time applications.

• This OS uses static memory management.
• It provides single level file system so hardly it can support for secondary storage management. It provides

database management in the form of TinyDB.
• It doesn’t support virtual memory management.
• As far as the memory protection is considered, it exploits the concept of Deputy which is a resource to

resource compiler that ensures type and memory safety for C code. Code compiled by Deputy relies on a
mix of compile and run-time checks to ensure memory safety. In Tiny OS version 2.1, the memory safety is
incorporated[4].

• As far as dynamic memory allocation is concerned, TinyAlloc compaction based memory manager is used
in this O.S.[2] It allocates memory bytes from a fixed-size frame and returns double pointers to the
allocated bytes. Because of which, TinyAlloc can move the memory around in the frame without having to
change the external references used by the application program. This allows it to carry out compaction and
avoid external fragmentation. In its TinyOS implementation, TinyAlloc is a split-phase operation. The

Prof. Manjiri Pathak / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1172

application makes a call to allocation routine and its completion is asynchronously signaled by
allocCompleteSignal. Similar to allocation, compaction is also asynchronous and signaled via
compactCompleteSignal.

• In case of dynamic reprogramming, the entire OS is propagated onto the target node, & then image is read
into the program memory. The node is rebooted with the new image[2].

b. Nano-RK
• It is energy aware, resource-centric OS that supports real-time requirements and high level networking

primitives as well as task management and synchronization mechanisms[14]. Due to this, it is also suitable
for Wireless Multimedia Sensor Networks supporting multimedia traffic.

• It provides rich functionality and timing support using less amount of memory. It has a support for multihop
networking & multitasking. It has extended WSN lifetime.

• Nano-RK provides support for static memory management. Here, both the OS and applications reside in a
single address space.[5]

• It uses static configuration approach for energy usage control.
• It provides priority-based preemptive scheduling for multiple tasks, thus ensuring to meet the deadlines for

complicated tasks.
• For shared resources such as memory, Nano-RK provides mutexes and semaphores for serialized access &

concurrence control mechanism. In addition, it provides APIs to reserve the system resources. The tasks
can specify their resource needs & OS provides guaranteed access to these resources.[15]

c. LIMOS
• Its kernel adopts a component-based three-level system architecture: action (system operation), thread

(component) and event (container)[17]. So, it consists of a predictable and deterministic two-level
scheduling mechanism: 'non pre-emption priority based' high level scheduling for events and 'preemptive
priority-based' low level scheduling for threads.

• This natively hybrid operating system works in multi-threading & event driven modes to minimize
resource requirements & improve system efficiency depending on the application diversity. It supports real
time applications. It’s distributive real time micro-kernel supports multi-level system architecture that
adopts predictable and deterministic two-level scheduling mechanism[1] a) non pre-emptive priority based
high level scheduling for events and b) preemptive priority-based low level scheduling for threads[6].

• It is dedicated to strict resource constrained embedded applications. It has less memory requirement(<5KB)
comparing with other RTOSs[18].

d. SOS
• Here, linked lists of memory blocks having three different sizes are provided. Application can request for

the fixed size block from one of the lists as per the requirement.[2]
• It supports runtime reconfiguration & reprogramming of the program code. In case of dynamic

reprogramming, the modules are loaded & unloaded at run time. Since the modules are position
independent binary, they can be dynamically linked. Here relative address is used rather than the absolute
address thus providing relocatability. Due to module level reprogramming, the memory requirement is
reduced. The updates are installed directly into the program memory thus reducing the energy & time
requirements.

• The current implementation of SOS doesn’t provide the memory protection.
e. MANTIS
• It is multi-threaded, lightweight & energy efficient OS & is portable across multiple platforms.
• It provides preemptive, priority based scheduling.
• It’s small footprint of 500 bytes, includes kernel, scheduler, and network stack.
• The memory is dynamically allocated to the stack & process registers for each thread[11].
• Even though here the support for real-time multimedia applications is not provided in its communication

protocol stack, one can implement real-time transport and routing protocols for multimedia sensor networks
in MANTIS by using custom routing and transport layer protocols on top of the MAC layer.

• In case of dynamic reprogramming, the entire OS is propagated on the node & then it is rebooted with new
image. The reprogramming is possible here at the thread level also where the values of variables can be
changed.

• It maintains two logically distinct sections of RAM: the space for global variables that is allocated at
compile time & remaining part of the RAM is managed as a heap[3]. Due to the multi-threaded model of
operation, every Mantis program must have a stack space allocated from the system heap, and the space is
retuned to the heap once the thread completes it execution. Locking mechanisms must be used to achieve
mutual exclusion of shared variables[11].

Prof. Manjiri Pathak / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1173

• Multithreading support here comes at the cost of context switching and stack memory allocation. Since the
kernel occupies 500bytes of memory, remaining portion of the memory is available to support
multithreading.[3]

• MANTIS manages different threads’ memory using the thread table & does not provide any mechanism for
memory protection.

• In MANTIS, mutexes & counting semaphores are used to avoid race conditions. It performs resource
sharing with the help of semaphores.

f. Contiki
• It is a multitasking, light weight, multithreading, open source operating system developed for portable and

memory-constrained embedded systems that contains optional pre-emptive scheduling.
• The Contiki kernel comprises of a lightweight event scheduler that dispatches events to running processes.
• It supports dynamic memory management & dynamic linking of the programs. For this purpose, it provides

powerful memory block management functions for blocks of fixed length. It keeps the allocated memory
free from fragmentation by compacting the memory when blocks are freed. Therefore, a level of indirection
is used here. A memory block is statically declared using the MEMB() macro. Memory blocks are allocated
from the declared memory by the memb_alloc() function, and are de-allocated using the memb_free()
function[3][7].

• A full system with the code & provision of GUI requires about 30 KB of RAM. Thus it contains a small
footprint with less requirement for memory consisting of the base system, web server, virtual network
computing server (VNC), and a small virtual desktop. It has two low power TCP/IP communication stacks
supporting IPv4 & IPv6, consisting of µIP(to communicate over the internet) and Rime(designed for low
power radios), where, it allows limited TCP/IP connections to the systems featuring TCP, IP, unicast UDP,
ARP, ICMP, SLIP protocols[10]. Here micro references to the small memory requirements of a program
code, needed to support a limited number of connections.

• Contiki provides a flash-based file system for storing data inside the sensor network called as ‘Coffee’. It
allows multiple files to coexist on the same physical on-board flash memory.

• Contiki does not provide any memory protection mechanism between different applications.
• In case of dynamic & remote reprogramming, instead of propagating the entire OS binary image, the

modules are loaded & unloaded at run time like in SOS, thus reducing the memory, energy & time
requirements while transmitting through the network[7]. Here the core code is kept separate from the
program code in ROM & the program code is loaded in memory at runtime. Due to communication
capability with the network using TCP/IP, it can also load and unload programs over the network
connection into RAM or ROM.

g. LiteOS
• Since it is a Real Time OS used for WSN, it supports real time applications.
• In this OS, entire network is modeled as a distributed file system. It consists of hierarchical file organization

& remote scriptable wireless shell interface is provided using UNIX like commands[12].
• It uses a plug-and-play routing stack and is a lightweight event logging.
•
•

LiteOS provides a familiar programming environment based on UNIX, threads, and C.

•
In this OS, both thread driven & event driven programming(through callback functions) is supported[8][9].
Dynamic memory management is supported at the kernel level through C like malloc & free functions. It
also supports

• Here memory address space assigned to the kernel is separate from that of an application & also between
multiple applications thus providing the security.

online debugging and file system assisted communication stacks.

• It supports object oriented programming using LiteC++ & Unix like shell.
• It provides round robin & priority based scheduling.
•

•

Kernel supports dynamic loading, unloading of multithreaded applications and concurrent execution of
multiple threads without overlapping the memory sections accessed by them.

•
Wireless reprogramming is done at application level.

•

LiteOS maps WSN to UNIX like file directories, allowing user friendly operations. It uses modified HEX
files that are smaller in size to relocate information.

•
It provides little support for real time applications.

h.
It contains smaller footprint which is suitable for resource constrained nature of WSN[8][9].

• Enix is a lightweight dynamic operating system for tightly constrained platforms of WSN.
Enix

• Enix supports remote reprogramming.

Prof. Manjiri Pathak / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1174

• A lightweight, efficient file system named EcoFS is included in Enix that is configurable. Here only
required resources are used to conserve the code memory & to increase the life time of WSN. Here 4 types
of data are supported: binary code data, preferences of sensor devices, network data such as routing tables,
and sensed data. Active time of the Micro-SD card is reduced by I/O scheduling and by limiting the access
via the API provided by EcoFS. To reduce code size, we let the controller inside the Micro-SD card handle
wear leveling (i.e., evenly distributing writes among pages) and erase-before-write[13].

• The replaceable scheduler is used to support different scheduling policies. It’s efficiency can be improved
by fast algorithms & overhead of context switching(which is required while scheduling another thread by
preempting the running one) can be reduced by storing the critical registers on the internal stack instead of
using external memory.

• Virtual memory is supported with the assistance of a compiler. It is achieved using demand segmentation &
without MMU. Here each function is compiled into a code segment that is then stored on the Micro-SD
card at a specific virtual address. The segment is loaded on demand by using the approach of PIC(Position
Independent code) while the user program calls this virtual address at run-time. Memory compaction and
garbage collection are implemented to solve the problem of external fragmentation by checking the memory
usage periodically and to recycle unused memory for future allocation. The cascaded call problem is
handled in Enix by restricting the garbage collector to only non swappable code.

i.
•

μC/OS-II

•

μC/OS-II is a real-time preemptive multitasking embedded OS kernel, which is portable & scalable that can
support time-sensitive tasks[19].

•

It provides various functionalities for networked applications such as multitasking, synchronization, timer
management, memory management.

•

It also enables micro sensor nodes to natively interleave complex tasks with time-sensitive tasks, thereby
mitigating the bounded buffer producer-consumer problem.

• μC/OS-II can effectively support concurrency model.
It is easily applicable to Wireless Sensor network applications because of its advanced functionalities.

• In case of small footprint, its RAM size has to be still reduced to run normally on h/w platforms of sensor
nodes. So to reach memory efficiency, this OS provides a function OSTaskStkChk() to reduce the amount
of RAM needed by the application code by not over allocating stack space. The RAM space can also be
saved by modifying the system function called OSTaskDel().

• As far as remote reprogramming is concerned, it can work on following possibilities: re-flashing of the
entire OS; reprogramming of a single thread; and changing of variables within a thread. To overcome the
difficulty of reprogramming in the network, a shell is designed for μC/OS-II that runs in PC to connect with
the sink node. The programmer simply connects the sink node to a PC through LAN and opens the μC/OS-
II shell.

Even though the issues related to memory management are handled in these operating systems up to some extent
& improvements are made in the newer versions of earlier operating systems or new operating systems, still
there are some lacunas in each & every OS. So there are many research gaps & opportunities to work further in
this area. In the next section, we will see how these research gaps can be considered as a future research scope in
this field.

IV. RESEARCH GAPS & OPPORTUNITIES IN OS DESIGN W.R.T. MEMORY MANAGEMENT
FOR WSN

In this section, we will discuss, some of the challenges where further research work is required in this area:
• As new application areas with real time traffic need more memory, the sensor nodes with large secondary

storage are required[14]. As huge amount of data is collected & processed at the nodes, this data has to be
stored & maintained in large databases. So the requirement of secondary memory management here is also
increased. To achieve this, much more improvement in file system to manage the secondary storage & large
databases is required.
Even though, some of the OS like Enix provides lightweight & efficient file system, still there is a scope in
implementation of efficient secondary memory management.

• In the existing operating systems for WSN, there is very limited work done in case of memory management
for multiple concurrent applications & support for virtual memory management. Even though some amount
of work is done w.r.t. this issue in some of the operating systems as mentioned above, still significant
amount of work is required here to support heavy real time data storage & computations. It should also be
energy & memory efficient. Especially, in WMSN there is much more work to be carried out in memory
management where the network consists of the heterogeneous sensors that are capable of retrieving
multimedia data like audio, video, images, scalar sensor data & do collaborative sensing[14].

Prof. Manjiri Pathak / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1175

• Even though, schedulers in some WSN OSs have been designed to support soft as well as hard real-time
operations, still there is a scope of work to be done in fair scheduling of real time data & to achieve
concurrency. This issue is taken into consideration here, as the memory allocation between multiple tasks or
concurrent execution of multiple applications should be done in efficient way. Along with the same,
efficient memory protection is also required during allocation.

• As mentioned earlier, remote reprogramming of densely deployed nodes is a challenging task due to
dynamic loading & unloading of the modules or components which should be handled efficiently by
designing proper APIs.

• Another emerging field of research w.r.t. WSN is integrating it with cloud computing[16]. This next
generation of WSN will benefit when sensor data is added to blogs, virtual communities, and social network
applications. While the idea of having cloud computing just as a transparent layer on top of real world WSNs
is appealing, its realization is really challenging. The devices in the cloud are normally equipped with
powerful processor, large memories and constant power source. In WSNs the nodes are equipped with
constrained resources. Thus, combining both worlds requires fully new concepts that help to do proper load
balancing from the very beginning and by design & it can be achieved with concept of distributed shared
memory.

SUMMARY & CONCLUSION

As the range of possible WSN application domains with heterogeneous sensors is growing, lots of
improvements & further investigations are required to give stronger real time support & efficient memory
management techniques for WSNs. Much more attention is required for resolving the problems in areas like
WMSNs, integration of WSN with cloud computing etc.
In this paper, the issues & research challenges related to memory management that should be considered while
designing the operating system for WSNs are discussed. In the next section, the features & an approach to
memory management are considered for some of the WSN operating systems. Further, the research gaps &
opportunities for future work in this area are mentioned. Even though the significant amount of work is done
here, there are still the research gaps & so a wide scope for additional work in this field.

ACKNOWLEDGMENT

I would like to thank the authors of references whose contribution in this field helped me to prepare my paper.

REFERENCES
[1] https://moodle.polymtl.ca/pluginfile.php/84612/mod_resource/content/0/wireless.pdf
[2] http://www.comp.nus.edu.sg/~doddaven/cata.pdf
[3] http://www.mdpi.com/1424-8220/11/6/5900
[4] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231431/
[5] https://www.msu.edu/~liyang5/docs/nanork_tutorial.pdf
[6] http://motive.cemagref.fr/_publication/PUB00030956.pdf
[7] http://contiki.sourceforge.net/docs/2.6/a01685.html#_details
[8] http://en.wikipedia.org/wiki/LiteOS
[9] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4505477&url=http://ieeexplore.ieee.org/iel5/4505448/

4505449/04505477.pdf%3Farnumber%3D4505477
[10] http://www.sics.se/~adam/contiki/
[11] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and R. Han. ‘MANTIS: system support for

MultimodAl NeTworks of In-Situ sensors’. In Proc.WSNA’03, 2003.
[12] http://dl.acm.org/citation.cfm?id=1372737
[13] Yu-Ting Chen, Ting-Chou Chien , Pai H. Chou ‘Enix: A Lightweight Dynamic Operating System for Tightly Constrained Wireless

Sensor Platforms’, SenSys’10, November 3–5, 2010, Zurich, Switzerland.
[14] Manjiri Pathak, ‘OS design challenges & research opportunities in real-time WSNs & approach for real time support in Nano-RK’,

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)
[15] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462978&url=http%3A%2F%2Fieeexplore.ieee.org
[16] http://www.lcc.uma.es/~tolo/publications/WSN-ADT12.pdf
[17] Hai-ying Zhou, Feng Wu, Kun-mean Hou, ‘An Event-driven Multi-threading Real-time Operating System Dedicated to Wireless

Sensor Networks’, 2008 International Conference on Embedded Software and Systems.
[18] http://www.bvicam.ac.in/news/INDIACom%202011/210.pdf
[19] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351116&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%

3Farnumber%3D4351116

Prof. Manjiri Pathak / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 08 Aug 2013 1176

https://moodle.polymtl.ca/pluginfile.php/84612/mod_resource/content/0/wireless.pdf�
http://www.comp.nus.edu.sg/~doddaven/cata.pdf�
http://www.mdpi.com/1424-8220/11/6/5900�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231431/�
https://www.msu.edu/~liyang5/docs/nanork_tutorial.pdf�
http://motive.cemagref.fr/_publication/PUB00030956.pdf�
http://contiki.sourceforge.net/docs/2.6/a01685.html#_details�
http://en.wikipedia.org/wiki/LiteOS�
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4505477&url=http://ieeexplore.ieee.org/iel5/4505448/%204505449/04505477.pdf%3Farnumber%3D4505477�
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4505477&url=http://ieeexplore.ieee.org/iel5/4505448/%204505449/04505477.pdf%3Farnumber%3D4505477�
http://www.sics.se/~adam/contiki/�
http://dl.acm.org/citation.cfm?id=1372737�
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462978&url=http%3A%2F%2Fieeexplore.ieee.org�
http://www.lcc.uma.es/~tolo/publications/WSN-ADT12.pdf�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Hai-ying%20Zhou�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Feng%20Wu�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Kun-mean%20Hou�
http://www.bvicam.ac.in/news/INDIACom%202011/210.pdf�
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351116&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4351116�
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351116&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4351116�

	An Approach to Memory management inWireless Sensor Networks
	Abstract
	Keywords
	I. INTRODUCTION
	II. MEMORY MANAGEMENT ISSUES &CHALLENGES
	III. MEMORY MANAGEMENT APPROACH IN WSN OPERATING SYSTEMS
	IV. RESEARCH GAPS & OPPORTUNITIES IN OS DESIGN W.R.T. MEMORY MANAGEMENT FOR WSN
	SUMMARY & CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

