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Abstract—Simulation of reliable solutions of nonlinear engineering problems by means of stable 
numerical algorithms is a frequent and acceptable practice. This study focuses the development and 
investigation of Runge-Kutta coefficients dependent stability polynomial for the second, third and fourth 
orders Runge-Kutta schemes. The development utilized matrix inversion operation procedure that 
involves determinant and cofactors computation of relevant matrix. The validation was made referencing 
the standard result of [1] and extended to several cases. The resulting polynomials obtained consist of 
combination of the scheme coefficients with increasing power of time step that follows a rhyme pattern. 
The validation test case result agreed perfectly with test standard result. Selected studied version of 
different schemes shows wide variation in the shape of stability curve and region bounded. It is 
interesting to note that the popular second, third and fourth order schemes have stability curve that 
bounded larger region than their respective counterpart. It is concluded that the study results can be 
utilized as reliable platform for stability analysis for different versions of the second, third and fourth 
order schemes. 
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I.  INTRODUCTION  

[2] described polynomial as an expression that have constants, variables and exponents (but: no division by a 
variable; it cannot have an infinite number of terms and a variable exponents that can only be 0, 1, 2, 3, ------
e.t.c). [3] defined polynomial as an algebraic expression consisting of a constant multiplication and one or more 
variables raise to an integral power. The relevance of polynomial equation in sciences and engineering cannot be 
overemphasized. Polynomial equation has been used as the foundation for numerous numerical modelling in 
engineering. Significant research efforts have been made in the adoption of polynomials in nonlinear dynamics. 
Generalized polynomial chaos has been identified to fail for long term integration. This is because it 
experienced a continuous deterioration in its optimal convergence behaviour which in turn leads to very high 
error-levels. [4] studied a time-dependent alternative of polynomial chaos in order to overcome the problem of 
deterioration in behaviour. The author reinitialized the polynomial chaos expansion of the solution discretely in 
time based on the statistics of the evolved solution at this discrete time-level. This allows a low order 
polynomial expansion at each instant in order to attain satisfactory precisions. The author’s finding has 
demonstrated that the time-dependent polynomial chaos is capable of solving a one-dimensional stochastic 
ordinary differential equation. A multi-element generalized polynomial chaos method for arbitrary probability 
measures has been developed by [5]. This method was applied to solve ordinary and partial differential 
equations with stochastic inputs. Numerical experiments revealed that the cost for the construction of orthogonal 
polynomial is negligible compared to the total computation time cost. This finding has again reinforced the 
nonlinearity characteristics of polynomial dynamics. [6] paper presented a new Lauerre’s type method for 
solving of polynomial equations with real coefficients. The paper extensively demonstrated the effectiveness of 
the method for solving many practical problems. A study which provides a proof of a relationship theorem 
between nonlinear analogue polynomial equations and the corresponding Jacobian matrix has been studied by 
[7] .This theorem has been satisfied to be effective for all nonlinear polynomial algebraic system equations. The 
presented theorem has a benefit of reducing numerical catalogue equations of nonlinear initial value problems to 
the simple linear ones without any linearization procedures. [8] paper focused on computing stability regions 
Runge-Kutta methods for delay differential equations. Practical determination of stability regions when various 
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fixed-step wise Runge-Kutta methods combined with continuous extensions are applied to the linear differential 
equation with fixed delay parameter. The paper extensively explained an alternative stability boundary 
algorithm that overcomes the difficulties encountered using the boundary locus technique. This new algorithm is 
applicable for both explicit and implicit Runge-Kutta methods. [9] studied the flexible stability domains for 
explicit Runge-Kutta methods. The paper presented families of stability polynomials for explicit Runge-Kutta 
methods that exhibit some optimality. These families were employed to construct Runge-Kutta methods that 
adaptively follow a spectrum given in a respective application without the need of reducing the time step. The 
optimal stability polynomials for explicit Runge-Kutta were specifically applied for advection-diffusion 
dynamics. Findings show that for strong diffusion of fine grids, more stages are employed in order to maintain a 
time step controlled by the Advection alone. Strong stability high order Runge-Kutta time discretizations were 
developed by [10] for application with semi-discrete method of lines approximations of hyperbolic partial 
differential equations. In their paper, an optimal strong stability preserving Runge-Kutta methods as well as a 
bound on the optimal time step restriction was studied. The authors concluded that the development of strong 
stability preserving Runge-Kutta methods was primarily geared toward linear operations and the wide 
applicability of these methods. The problem of fault detection and isolation has been applied by [11] for 
nonlinear systems that are modelled by polynomial differentiation algebraic equations. The authors adopted 
Ritt’s algorithm in obtaining an input-output representation of the monitored system by eliminating unknown 
variables. The simulation results obtained demonstrated the importance of fault detection and isolation in 
modelling nonlinear systems that are modelled by polynomial equations.  Methods for detecting and localizing 
time singularities of polynomial and quasi-polynomial ordinary differential equation has been studied and 
developed by [12]. The authors satisfactorily adopted these methods in several fields of system dynamics. This 
includes systems such as decoupling, Lotka Voltera form, companion system and global lipschitz property. 

From the foregoing, there is no doubt that an extensive work has been made in the applications of polynomials 
in the study of nonlinear dynamics. Notwithstanding this landmark research output in this field, vigorous efforts 
are yet to be made in the development as well as the investigation of Runge-Kutta coefficients dependent 
stability polynomial. This research dearth strongly motivates the present paper. The aim of this research paper is 
to develop and investigate the dynamics of dependent stability polynomial for the second, third and fourth 
orders Runge-Kutta schemes. 

II. METHODOLOGY 

[13] refers, the numerical method of Runge-Kutta is devoted to solving ordinary differential equations of the 
general form given by equation (1). However, the step by step numerical solution of equation (1) is given by 
equation (2), with   being an incremental weighting function. The general form for  is given by equation (3). 

According to equation (3), the slope estimate of   is used to extrapolate from an old value iy  to a new value 

1iy   over a step size h. 

( , )
dy

f x y
dx

           (1) 

1i iy y h             (2) 

1 21 2 n nc K c K c K               (3) 

The functions 1K  to 2K , 1K  to 3K  and
 1K  to 4K  for the respective second, third and fourth order Runge-

Kutta schemes are given by equations (4) to (5), equations (4) to (6) and equations (4) to (7). The equivalents of 
equation (2) for the second, third and fourth schemes are given respectively by equations (8), (9) and (10). 

1 ( , )i iK f x y            (4) 

2 2 21 1( , )i iK f x a h y b K            (5) 

3 3 31 1 32 2( , )i iK f x a h y b K b K               (6) 

4 4 41 1 42 2 43 3( , )i iK f x a h y b K b K b K            (7) 

 1 1 1 2 2i iy y h c K c K   
         (8)

 

 1 1 1 2 2 3 3i iy y h c K c K c K    
        (9)

 

 1 1 1 2 2 3 3 4 4i iy y h c K c K c K c K             (10) 
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[1] and [14] provided detail coefficients algebraic relationship and simulation presented in graphics. The two 
studies adopted the equivalent relationship with the corresponding coefficients in Taylor series expansion of the 
function ( , )f x y  to the nth–order terms that was supplemented by Butcher simplifying assumption implied by 

equation (11).  

1

(1 ), 2,3,4
s

i ij j j
i

c b c a j


             (11)
 

[3] defined the stability polynomial (R(h)) in the general term as equation (12) for time step size (h) and Tc , A  
and e  given by equations (13) to (16), equations (17) to (20) and equations (21) to (24) for the second, third and 

fourth order scheme respectively. It is required that ( ) 1R h  for absolute stability. However, the stability 

curve outlines in the present study were defined as 0.99 ( ) 1.00R h   and evaluated at constant length step 

size of 0.01on the plane with real and imaginary lengths defined respectively as 3.00 Re ( ) 1.00h    and 

3.00 Im ( ) 1.00h    

1 1( ) 1 ( ) 1T TR h hc I hA e hc B e             (12) 

A. Runge-Kutta Second Order scheme 

 1 2
Tc c c            (13) 

21

0 0

0
A

b

 
  
 

           (14) 

21

1 0

1
I hA B

hb

 
     

         (15) 

1

1
e

 
  
 

           (16) 

B.  Runge-Kutta Third Order scheme 

 1 2 3
Tc c c c           (17) 

21

31 32

0 0 0

0 0

0

A b

b b

 
   
  

          (18) 

21

31 32

1 0 0

1 0

1

I hA B hb

hb hb

 
     
   

        (19) 

1

1

1

e

 
   
 
 

           (20) 
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C.  Runge-Kutta Fourth Order scheme 

 1 2 3 4
Tc c c c c          (21) 

21

31 32

41 42 43

0 0 0 0

0 0 0

0 0

0

b
A

b b

b b b

 
 
 
 
 
 

         (22) 

21

31 32

41 42 43

1 0 0 0

1 0 0

1 0

1

hb
I hA B

hb hb

hb hb hb

 
    
  
    

       (23) 

1

1

1

1

e

 
 
   
 
  

           (24) 

The inverse of arbitrary matrix and that of matrix (B) depends on its determinant and cofactors matrix (F) as in 
equation (25). 

1 ( )

det

TF
B

B
             (25) 

The determinant of matrix (B) for the three schemes is same and is given by equation (26). 

det 1B             (26) 

D.  Coefficients of Validation Case 

The under listed coefficients adopted from  [1] for the fourth order scheme were used to validate this study.  

1 3 3 1

8 8 8 8
Tc    

 
;  21 31 32 41 42 43

1 1
; ; 1; 1; 1; 1

3 3
b b b b b b        . 

III. RESULTS AND DISCUSSIONS 

In this study, focus is on the fourth order scheme with extension of results applied to the second and third order 
schemes. Therefore, the relative details of computation of the sixteen entries of the cofactors matrix for the 
fourth scheme are under listed.  

11 32

42 43

1 0 0

1 0 1

1

F hb

hb hb

 
    
   

 

21

12 31 21

41 43

0 0

1 1 0

1

hb

F hb hb

hb hb

 
      
   

 

21
2

13 31 32 21 32 31

41 42

1 0

0

1

hb

F hb hb b b h b h

hb hb

 
      
   
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21
3 2

14 31 32 21 32 43 21 42 31 43 41

41 42

1 0

1 1 ( )

3

hb

F hb hb b b b h b b b b h b h

hb hb hb

 
          
    

 

21 32

42 43

0 0 0

1 1 0 0

1

F hb

hb hb

 
      
   

 

22 31

41 43

1 0 0

1 0 1

1

F hb

hb hb

 
    
   

 

23 31 32 32

41 42

1 0 0

1 0

1

F hb hb b h

hb hb

 
       
   

 

2
24 31 32 32 43 42

41 42 43

1 0 0

1F hb hb b b h b h

hb hb hb

 
      
    

 

31

42 43

0 0 0

0 0 0 0

1

F

hb hb

 
   
   

 

32 21

41 43

1 0 0

1 0 0 0

1

F hb

hb hb

 
      
   

 

33 21

41 42

1 0 0

1 0 1

1

F hb

hb hb

 
    
   

 

34 21 43

41 42 43

1 0 0

1 1 0F hb b h

hb hb hb

 
      
    

 

41

32

0 0 0

1 1 0 0 0

1 0

F

hb

 
     
  

 

42 21

31

1 0 0

0 0 0

1 0

F hb

hb

 
    
  
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43 21

31 32

1 0 0

1 1 0 0

0

F hb

hb hb

 
      
   

 

44 21

31 32

1 0 0

1 0 1

1

F hb

hb hb

 
    
   

 

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

T

F F F F

F F F F
F

F F F F

F F F F

 
 
 
 
 
 

         (27) 

Use equations (26) and (27) in equation (25) to obtain the inverse of matrix (B). Thereafter, use the inverse of 
matrix (B), equations (21) and (24) in equation (12) to obtain the Runge-Kutta coefficients dependent stability 
polynomial for the fourth order scheme given by equation (28). 

   2 3 4
1 2 3 4 2 21 3 31 32 4 41 42 43 3 21 32 4 21 42 21 31 32 43 4 21 32 43( ) 1.0 ( ) ( ) ( ) ( )R h c c c c h c b c b b c b b b h c b b c b b b b b b h c b b b h                 

(28) 

Furthermore, the corresponding form of equation (28) can be obtained for the third order scheme by first 
repeating the procedure for the cofactors computation for matrix (B) given by equation (19). Thereafter use the 
inverse of matrix (B) obtained in conjunction with equations (17) and (20) in equation (12) to obtain the stability 
polynomial for the third order scheme expressed in term of the Runge-Kutta coefficients given by equation (29). 

  2 3
1 2 3 2 21 3 31 32 3 21 32( ) 1.0 ( ) ( )R h c c c h c b c b b h c b b h              (29) 

Similarly, the stability polynomial for the second order scheme expressed in term of the relevant Runge-Kutta 
coefficients is by extension of procedure given by equation (30). 

2
1 2 2 21( ) 1.0 ( )R h c c h c b h             (30) 

Equations (28), (29) and (30) refer, consistent and discernable pattern can be observed between the coefficients 
combination and increasing power of time step (h). In addition, the stability polynomial result given by equation 
(31) is obtained when the coefficients of the validation case are inserted into equation (28). This polynomial 
agreed perfectly with that of [1] or the popular version of fourth order Runge-Kutta scheme.  

2 3 41 1 1
( ) 1.0

2 6 24
R h h h h h              (31) 

Table 1: Coefficients of Selected Version of Fourth Order Scheme 

Cases 21b  31b  32b  41b  42b  42b  1c  2c  3c  4c  

RK41 0.500 0.000 0.500 0.000 0.000 1.000 0.167 0.333 0.333 0.167 
RK42 0.333 -0.339 1.007 1.013 -1.011 0.998 0.878 -0.377 0.374 0.124 
RK43 0.775 0.380 0.152 -0.088 -0.736 1.824 -0.076 0.125 0.757 0.194 
RK44 0.518 -0.613 1.039 -0.184 0.715 0.469 1.236 -0.536 0.135 0.165 
RK45 0.741 0.547 0.092 0.459 -1.614 2.155 -2.161 1.176 1.700 0.285 

Table 2: Coefficients of Selected Fourth Order Scheme Stability Polynomial 

Cases 4 21 32 43c b b b  3 21 32 4 21 42 21 31 32 43(c b b c b b b b b b    2 21 3 31 32 4 41 42 43( ) (c b c b b c b b b      

4

1

i

i
i

c



  

RK41 0.042 0.167 0.500 1.000 

RK42 0.042 0.195 0.249 1.000 

RK43 0.042 0.089 0.694 1.000 

RK44 0.042 0.162 -0.055 1.000 

RK45 0.042 -0.054 2.242 1.000 

Salau T.A.O. et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 1096



Table 3: Coefficients of Selected Version of Third Order Scheme 

Cases 21b  31b  32b  1c  2c  3c  

RK31 0.500 -1.000 2.000 0.167 0.667 0.167 
RK32 0.333 0.444 0.224 -1.246 0.011 2.235 
RK33 0.775 0.134 0.398 -0.213 0.673 0.540 
RK34 0.518 0.514 -0.089 -1.266 5.897 -3.631 
RK35 0.741 0.345 0.294 -0.057 0.291 0.766 

Table 4: Coefficients of Selected Third Order Scheme Stability Polynomial 

Cases 3 21 32c b b  2 21 3 31 32( )c b c b b   

3

1

i

i
i

c



  

RK31 0.167 0.500 1.000 

RK32 0.167 1.497 1.000 

RK33 0.167 0.809 1.000 

RK34 0.167 1.511 1.000 

RK35 0.167 0.705 1.000 

Table 5: Coefficients of Selected Version/Stability Polynomial of Second Order Scheme 

Cases  21b  1c  2c  2 21c b  

2

1

i

i
i

c



  

RK21 1.000 0.500 0.500 0.500 1.000 

RK22 5.000 0.100 0.900 4.500 1.000 

RK23 2.500 0.200 0.800 2.000 1.000 

RK24 1.670 0.300 0.700 1.169 1.000 

RK25 1.250 0.400 0.600 0.750 1.000 

Tables 1 to 5 contain in detail the coefficients of selected samples of version and stability polynomial for 
second, third and fourth order Runge-Kutta schemes. It is worth noting that RK21, RK31 and RK41 refer 
respectively to the popular second, third and fourth order version of Runge-Kutta schemes. It is observed that 
the stability polynomial vary in details for studied cases and schemes. The selected samples of stability curve 
outline are given in figures 1 to 9. 
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Figure 1: Stability polynomial scatter plot for RK41. 
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Figure 2: Stability polynomial scatter plot for RK42 
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Figure 3: Stability polynomial scatter plot for RK43 
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Figure 4: Stability polynomial scatter plot for RK31 
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Figure 5: Stability polynomial scatter plot for RK32 
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Figure 6: Stability polynomial scatter plot for RK33 
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Figure 7: Stability polynomial scatter plot for RK21 
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Figure 8: Stability polynomial scatter plot for RK22 
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Figure 9: Stability polynomial scatter plot for RK23 

Referring to figures 1 to 9, visual assessment shows that the stability curves vary in shape and quantity of 
bounded region over studied cases. The stability curve of RK42 comprises of three disjointed pieces with a total 
bounded region area smaller than the corresponding RK41. Furthermore, the stability curve of the popular 
second, third and fourth order schemes bounded more region than other corresponding studied cases. This 
observation on large bounded stable region is one of the factors for their popularity. The stability curve of RK43 
and RK32 resemble qualitatively and likewise RK22 and RK23. However the bounded stable region of RK43 is 
higher than that of RK32. RK22 is the poorest measured in term of lowest bounded stable region area among 
figures 1 to 9. The curve of RK33 is not closed at the left end of the real axis. 
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Figure 10: Overlaid stability curves for the fourth order scheme (RK41 to RK45) 
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Figure 11:  Overlaid stability curves for the third order scheme (RK31 to RK35) 
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Figure 12: Overlaid stability curves for the second order scheme (RK21 to RK25) 

Figures 10 to 12 depicts comparative stable bounded region with respect to studied schemes and five distinct 
stability polynomials per scheme. Figure 12 shows clearly that the stability domains of the four other versions of 
the second order scheme studied are subset of the largest stability domain of its popular counterpart. Similar 
observation of stable region as subset in obscured form is presented in figure 10 and 11 for the fourth and third 
order scheme respectively. 
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IV. CONCLUSIONS 

The stability polynomial was developed and investigated for the second, third and fourth order Runge-Kutta 
schemes using the scheme relevant coefficients as input parameters. The combination of the scheme coefficients 
with increasing power of time step follows a rhyme pattern. The validation test case result agreed perfectly with 
the test standard result of [1]. Selected studied version of different schemes shows wide variation in the shape of 
stability curve and stable region bounded. The popular second, third and fourth order schemes have stability 
curve that bounded larger stable region than their respective counterpart. Thus the study results can be utilised 
as reliable platform for stability analysis for different version of the second, third and fourth order schemes. 
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