
Automata-Based Software Reliability 
Paradigm for Ubiquitous Systems 

Ritika Wason 1, P. Ahmed 2, M. Qasim Rafiq 3 
1&2 School of Engineering and Technology, Sharda University 

Greater Noida, India 
1 rit_2282@yahoo.co.in 

2 pervez.ahmed@rediffmail.com 
3 Department of Computer Science, Aligarh Muslim Uiversity 

Aligarh, India 
3 mqrafiq@hotmail.com 

Abstract—The paper proposes a novel paradigm for accurate reliability estimation of ubiquitous 
systems. The proposed prototype differs from all conventional software reliability models as it does not 
rely on any kind of post failure data, questionable assumptions or statistical distributions. The paradigm 
instead is based on software state to state transition at runtime. Using this state to state transition 
information, the model ensures fault free software operation. 

Keyword-Software Reliability, Finite State Automata, Automata-Based Software Reliability Model, Self-
Learning Automata. 

I. INTRODUCTION 

Accurate failure-free operation under different environmental conditions is a necessity for profitable 
ubiquitous software. The vision of ubiquitous software is to support humans in their daily tasks while remaining 
practically invisible [1].Ubiquitous systems aim at configuring themselves without any need for human 
intervention. Before realizing the paradigm of ubiquitous computing completely many different challenges like 
scalability, interoperability, reliability etc need to be addressed. Reliability of ubiquitous systems is an important, 
difficult to ignore attribute for all software especially ubiquitous systems. 

A ubiquitous system is meant for heterogeneous execution with different new nodes of failure [6]. In such a 
scenario ensuring failure free operation of ubiquitous software is a challenge in itself. Conventional approaches 
to reliability estimation will fail badly for ubiquitous software. Reliable ubiquitous software is expected to be 
fault-free, high-performance and self-healing [1]. Hence faulty operation for ubiquitous software is not tolerable. 
Science of software reliability till date does not have a reliability estimation model to estimate software 
reliability with 100% accuracy. Neither do any of the conventional models attempt to handle or control software 
failure [10]. The major reason behind these limitations of conventional software reliability models can be 
attributed to a number of factors, like: 

 Similar treatment of software and hardware reliability despite fundamental differences in both entities. 

 Use of misrepresented assumptions to quantify software reliability. 

 Analysis of post-failure data for model parameter estimation. 

 Dependency of software reliability models on statistical distributions that do not address the dynamic 
nature of software. 

The above limitations of conventional software reliability models have been pointed in the past by many 
researchers [2,7,10]. However, reliability engineers continue to design reliability estimation models using faulty 
assumptions along with statistical distributions in an attempt to accurately estimate software reliability. 

It should be noted that dependence of human society on software has grown manifold. To meet real-world 
expectations software systems have also grown exponentially both in terms of size and complexity. Software 
today is no longer a structured program which will be developed, tested, repaired, implemented and debugged 
throughout its useful life. The present age expects intelligent software to be developed in a manner that software 
can continue to work despite occurrence of errors (fault-tolerant) or software may take corrective measures in 
case of failure (self-healing). This complex state of affairs shows that though we have advanced software 
systems we do not have appropriate models to ensure confidence of fault free operation. Hence, to completely 
realize our fault-free, autonomic, self-healing or ubiquitous systems we need to simultaneously develop a 
reliability paradigm to ensure smooth operation of ubiquitous systems. 

Reliable software is expected to perform continuously despite the presence of faults (fault tolerance) [4]. Till 
date there does not exist a software reliability estimation model that can overcome software failure [2]. There 
exists no formal model of software representation that can be tested and verified to ensure reliable software 
execution. Existing software reliability estimation models quantitatively estimate number of times software 

Ritika Wason et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 929



would perform correctly. However, for each execution, software is an automaton for converting distinct set of 
inputs into expected set of outputs. These automata, transits from state to state using some transition instruction. 
In its execution life, if a software executes ten million times, then every time the software executes along a 
correct path it will terminate correctly. If we track this execution path of the software then we can direct the 
software in any mode (self-healing or fault-tolerant). The above discussion demonstrates the actual nature of 
software reliability. The problem with the conventional software reliability estimation models is that they all 
treat software reliability as an extension of hardware reliability. None of the existing software reliability 
estimation models treat software reliability as discussed above. 

Software especially ubiquitous, shall have zero reliability each time it executes a fault, similarly software is 
100% reliable if it performs as expected. Contrastingly, conventional software reliability modelling approaches 
do not address software reliability as above. Instead they estimate software reliability using some statistical 
model. Parameters required by the model are estimated using existing data on software failures [10]. Practicality 
of such models and their underlying assumptions is thus questionable [10]. We argue that a ubiquitous system is 
a combination of many possibly globally distributed components. The components may fail individually but the 
system needs to perform reliably. To ensure this conventional software reliability models using complex 
mathematics and statistics are of no help. The paper proposes automata-based software reliability model that 
utilizes finite state machine (FSM) representation of executable software to estimate software reliability. 
Software at runtime is an automaton. An FSM representation of executable software depicts different system 
states along with the transitions ensuing state change. Hence, reliability of software is equivalent to the 
reliability of the automata being executed.  The broad goal of this research is to develop an automata-based 
reliability estimation model that can be applied to control the operation of different, life-critical software like 
autonomic, self-healing, ubiquitous etc. 

The paper is organized as follows: Section II discusses the importance of reliability for ubiquitous software. 
Section III describes the automata-based software reliability model. Section IV elaborates the advantages of the 
proposed model over conventional software reliability estimation models. Section V evaluates the proposed 
model. 

II. RELIABILITY REQUIREMENT FOR UBIQUITOUS SYSTEMS 

Mark Weiser, XEROX coined the phrase ubiquitous computing in 1988 [1, 8]. The paradigm was developed 
with a concern to make computers so pervasive that they invisibly assist our daily tasks. To achieve this highest 
ideal of ubiquitous systems is a challenge in itself. The very idea of software available globally, pervasively 
involves numerous issues like availability, interoperability and reliability. Reliability of ubiquitous services and 
devices is a crucial requirement. To construct reliable ubiquitous systems we need to have a reliability paradigm 
that can ensure characteristics like self-monitoring, self-regulating and self-healing into the available ubiquitous 
systems. Programming has always relied on models for ensuring reliable software operation despite the 
occurrence of errors. However, reliable software execution still remains a problem. However, solution of this 
problem has been crucial in the present times when computing has grown to the level of ubiquitous or pervasive 
computing. To solve this issue we first define software reliability as a function of correct I/O (input/output) pair 
at runtime. This can be expressed as follows: 

Input: I/O Pair < i, o> 

Output: If o= f (i), TRUE; else, FALSE. 

Reliability: For all <i, o>: on input <i, o>, the software must return the correct output with probability p, 
where 0≥ p≤1. 

Software reliability at any point of time is a function of the I/O pair at runtime [5]. Hence, runtime software is 
the most appropriate source for software reliability estimation. Contrastingly, none of the conventional software 
reliability models give any consideration to runtime software structure. Hence, to meet the reliability challenge 
of ubiquitous systems, we require an efficient software reliability estimation model based on the runtime 
structure of ubiquitous software to control system execution to ensure reliable operation. 

III. AUTOMATA-BASED SOFTWARE RELIABILITY MODEL 

Conventional reliability estimation approaches estimate software reliability using some assumptions 
alongwith post-failure data fitted over some statistical parameters. These approaches give no due consideration 
to the actual software structure at runtime. Ubiquitous systems are meant to be so embedded and so natural that 
we use it without even thinking about it [8]. To realize this, ubiquitous software should ensure failure free 
operation under all operating environments. Conventional software reliability estimation models cannot 
guarantee this [10]. What we require is a rigorous understanding of how ubiquitous software shall execute at 
runtime. We need a reliability model capable of analyzing, correcting, diagnosing, documenting, enhancing, 
evaluating and implementing software execution. Complete realization of this control tool will require an 
amalgamation of many different features of computation like automata theory, Hoare logic, Formal Language 

Ritika Wason et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 930



theory etc [1]. We now propose an automata-based software reliability estimation model that can control reliable 
software operation by detecting software state-to-state transition at runtime.  

We hypothesize that software during execution is an automata. Hence, a finite state machine-based software 
representation model should be used to control software execution. This automata-based software representation 
symbolizes states software can acquire during its function. Hence, we can trace the path along which software 
executes. Once we trace the software path, we can control the system and stop its progress before it executes 
failure. The proposed automata-based software reliability is explained in Figure 1 below: 

 
 
 
 

Figure 1: Phases of Automata-Based Software Reliability Model 

Figure 1 above depicts the various phases of the proposed automata-based software reliability model. The 
functions of the model during each phase are elaborated upon in Table 1 below. 

TABLE I CHARACTERISTICS OF EACH PHASE OF AUTOMATA-BASED SOFTWARE RELIABILITY MODEL 

Phase Name Description 
I FSM 

Representation 
Input: Assembly code of executable software under analysis;  
Output: i) Finite state machine representation. 
ii) Next_State Transition Table 
iii) Stochastic FSM of finite state machine representation as obtained in (i).  

II Software 
Implementation  

Use Next_State Transition Table to monitor software execution. Increase the 
probability of execution of each node software traverses by a unit. If next transition 
results in error node halt system execution, mark the next node with a probability 
zero and record it to Faulty_Node table. 

III Fault 
Tolerance 

From the node where the system has halted, find the next possible node using 
Djikstra’s Algorithm. Continue software execution and repeat this step till the 
software does not terminate. 

IV Software 
Maintenance 

Record the path taken by the software to the Alternate_Path Table. 

The above automata-based reliability model, when implemented will help ensure reliable software operation. 
At the time of this writing, we are working with the software implementation of this model. We demonstrate the 
working of the above model using a Java class named Login.java. This class is a component of Java-based Chart 
Generator Application developed by post-graduate students. Compiling the above code produces the executable 
file Login.class. .class file contains executable code in its bytecode notation. On disassembling this bytecode to 
its assembly instruction set an FSM for Login.class as shown in Figure 2 was obtained: 

I: FSM 
Representation 

II: Software 
Implementation 

III: Fault 
Tolerance 

IV: Software 
Maintenance 

Ritika Wason et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 931



 
Figure 2: Equivalent FSM for Login.class 

Figure 2 depicts how different assembly instructions result in software transition from one FSM state to another. 
Each of these transition instructions alongwith the possible next state will be recorded in Next_State Transition 
Table. The Next_State Transition Table obtained for Login class is shown as Table 2 below: 

 
 
 
 

Ritika Wason et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 932



TABLE 2 NEXT_STATE TRANSITION TABLE OF LOGIN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 can be used to supervise software execution during phase 2. If after encountering an assembly 
instruction the software does not transit to the next recorded state, the software can be halted at the previous 
state i. For example, if the program Login starts execution along the following path: 

Start Node q1 

When the software arrives at q1, we increase the probability of execution of q1 by one unit. However, if ‘ldc’ 
leads to error node instead of q5 as per Table 2, then system execution is halted at q1. q1 and ‘ldc’ will be 
recorded in Faulty_Node table. In phase III, the software can track the shortest possible path from the node (q1) 
to the final node using Djikstra’s algorithm. After this software execution can be resumed from q1 using the 
shortest possible alternative path. Once software terminates then the actual path treaded by the software can be 
recorded in the Alternative_Path Table. 

IV. AUTOMATA-BASED SOFTWARE RELIABILITY MODELS VERSUS CONVENTIONAL SOFTWARE 

RELIABILITY ESTIMATION MODELS 

The proposed automata-based software reliability model scores over the limitations of its conventional 
counterparts as follows: 

 The model does not use any assumptions about software execution; instead it uses actual software 
execution data to ensure fault-free software operation. 

 Theory of software reliability has been retrofitted to software [2]. Many different hardware reliability 
models are also being applied to software (ex: Power Model, Crow, 1974). The proposed automata-
based software reliability model is unique as it is based on the true nature of software execution. 

S.No Transition Instruction Next State 

1 new q0 

2 aload q1 

3 dup q2 

4 invokespecial q3 

5 astore q4 

6 ldc q5 

7 putfield q6 

8 iconst q7 

9 sipush q8 

10 bipush q9 

11 getfield q10 

12 pop q11 

13 aconst_null q12 

14 invokevirtual q13 

15 if_acmpne q14 

16 invokestatic q15 

17 iadd q16 

18 if_cmple/if_cmpge q17 

19 ifeq q18 

20 goto q19 

21 return final state 

Ritika Wason et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 933



 The model does not try to predict or assume the nature of processes applied to debug software 
(imperfect/perfect debugging) [7]. Instead the model spends effort on analyzing, diagnosing, correcting 
and documenting software path of execution at runtime. 

 Conventional models attempt to estimate reliability through testing [2]. However, the accuracy of the 
estimates is governed by the thoroughness of test coverage. Automata-Based Software reliability model 
is not dependent on the testing process which may vary significantly from the actual system usage and 
may not be done exhaustively. 

 Conventional software reliability estimation models are statistical models that accept some kind of 
failure data as input and produce system reliability estimates as output [10]. These models estimate 
software reliability completely ignoring software architecture during actual software execution [9]. The 
automata-based software reliability model is based on the fact that software during execution is an 
automata. The model uses actual assembly instruction set to trace software execution. 

Unlike its conventional counterparts the automata-based reliability model is an extension to the concept of 
effective path selection [3] from a control flow graph representing software. However, the model does not 
attempt to estimate all possible paths in automata. This is impossible for software systems as software-based 
automata representations may have loops. 

V. CONCLUSION 

Ubiquitous computing systems are the next generation of computing. However, they also articulate the 
current technical challenges for software researchers. Despite being coined over two decades ago, the vision of 
ubiquitous computing seems as futuristic today as it was earlier. The major reason for this is the fact that 
ensuring failure-free continuous software operation under all environments and platforms is a big challenge. 
Ubiquitous systems are highly complex due to vast heterogeneity and adhoc interactions. Hence, it is important 
to understand that though ubiquitous systems prototypes have been implemented. However, mass-production of 
such systems is currently impossible. The reason for this negative answer is the challenge of failure-free or 
reliable operation. The proposed automata-based reliability model captures the various system states and 
transitions resulting in those states. Hence, as compared to its traditional counterparts the model is the accurate 
solution for reliability control of ubiquitous systems. The major benefit of the model is that it can be used as a 
control tool to monitor software execution to direct the system towards the correct path of execution, whenever, 
it takes an incorrect path. We are working on the practical implementation of this model. However, the only area 
of concern for ubiquitous systems shall be the complexity caused due to heterogeneity at various system levels. 
To handle the level-wise complexity the tool would have to work with different monitoring points for each level. 
Further the complex interaction and interconnection patterns in the ubiquitous architecture as well as the 
nomadic behavior of some nodes may be some issues affecting the successful operation of the proposed control 
tool. 

For a ubiquitous system to be realized completely it needs to realize many generic properties, like reliability, 
context-awareness (application should comprehend the environment in which it is being used and adapt their 
operation to provide the best possible user experience. The very nature of ubiquitous computing is very sensitive 
as it is controlled by the devices and the environment on which it is run and hence involves the integration of 
many disparate technologies to meet the original design goals. 

REFERENCES 
[1] M. Satyanarayanan, Pervasive Computing: Vision and Challenges, IEEE Personal Communications, Vol. 8, No. 4, Aug. 2001, pp. 10 – 

17.  
[2] Bev Littlewood, MTBF is Meaningless in Software Reliability, IEEE Transactions on Reliability, 1975, pp. 82. 
[3] B.M. Gouthami and P.Kumar, Effective Path Selection to Estimate Software Reliability, Special Issue of International Journal of 

Computer Applications, ICCCMIT, 2012. 
[4] James Hamilton, Fault Avoidance vs. Fault Tolerance: Testing Doesn’t Scale, HPTS, 1999. 
[5] Hal Wasserman, Manuel Blum, Software Reliability via Run-Time Result Checking, Journal of ACM, Vol. 44, No. 6, 1997, pp. 826-

849. 
[6] Mark Weiser. Some computer science problems in ubiquitous computing, Communications of the ACM, Vol. 36, No. 7, July 1993pp. 

75–84. 
[7] C.V. Ramamoorthy, Software Reliability- Status and Perspectives, IEEE Transactions on Software Engineering, Vol. 8, No.4, 1982, 

pp.354-371. 
[8] M. Weiser, The Computer for the 21st Century, Scientific American , Vol. 265, No. 3, September, 1991pp. 94-100. 
[9] J.Floch, S. Hallsteinsen, E. Stav, F. Eliasen, K.Lund, E. Gjorven, Using Architecture Models for Runtime Adaptability, IEEE 

Software,vol. 23, No.2, 2006, pp. 62-70. 
[10] Amrit L. Goel, Software Reliability Models: Assumptions, Limitations and Applicability, IEEE Transactions on Software Engineering, 

Vol. SE11, No. 12, 1985, pp. 1411-1423. 

Ritika Wason et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 934


	Automata-Based Software ReliabilityParadigm for Ubiquitous Systems
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELIABILITY REQUIREMENT FOR UBIQUITOUS SYSTEMS
	III. AUTOMATA-BASED SOFTWARE RELIABILITY MODEL
	IV. AUTOMATA-BASED SOFTWARE RELIABILITY MODELS VERSUS CONVENTIONAL SOFTWARERELIABILITY ESTIMATION MODELS
	V. CONCLUSION
	REFERENCES




