
Standalone Command Processor –
Onchip Peripheral control and arbiteration

Dr. S. R. Ganorkar
Department of Electronics and Telecommunication,

Sinhgad College Of Engineering,
Pune, India

srganorkar.scoe@sinhgad.edu

Amol Bharat Ranadive
Department of Electronics and Telecommunication,

Sinhgad College Of Engineering,
Pune, India

 ranadive.amol@gmail.com

Abstract— There are many soft-core processors or microcontroller available in contemporary technological
world. Many of those when used for and on-chip peripheral control and arbitration are either tend to under use
when used for command processors because of their powerful features that are not utilized completely or many
of the capabilities and feature become redundant in specific applications. The present architecture of such on-
chip command processor is a soft core in its ultra simplified architecture. Its ridiculous simple architecture and
yet being powerful enough commands for control encourage it use for many on-chip peripheral controlling
purpose. The extended use of the mentions command processor can finds use in debugging & testing a design of
a digital circuit that is targeted onto FPGA/VLSI device. The present work discussed is about architecture,
commands and typical application scenario. This work also covers the RTL implementation, simulation using
test bench in VHDL. Along with simulation result it also covers the synthesis aspects of result for target FPGA
from Xilinx.

Keywords- Onchip control, command processor, command interpretation, serial processor

I. INTRODUCTION

Embedded soft processor cores for on chip & off-chip peripheral control are not very common, but at same
time there are various architectures that range from wide variety of strong features and large set of
instructions/command to a few commands and simple easy-to use architectures. A simple RTL implementation of
a command processor with its associated macroinstructions implemented on FPGA device to drive an external
peripherals having processor like bus interface [1] and it is effective for external peripherals. Master-serial pair of
host (master) and (slave) target-device such that the host sends read or write command to slave and in return the
slave sends data packets requested by host or receives data packets from host respectively is efficient and
effective approach to interface the on-chip command processor across to user via communication medium like
USB [2]. Another such an architecture and instructions are described as an Open On-Chip Debugger (OpenOCD)
that aims to provide debugging, in-system programming and boundary-scan testing for embedded target devices
[3]. And an interesting discussion that deals with debugging of the Infineon Peripheral Control Processor, PCP for
short, within the iSYSTEM winIDEA environment. PCP features and debugging methods are device
implementation dependent from Infenion [4]. Command processor with its associated macroinstructions drive an
external peripherals but for automotive applications are key area in contemporary world where the processor is
master and external peripherals are controlled with simple controller that can be treated as slaves interfaced to the
master processor[5].

The present work of a command processor aims and highlights a simplest and east to use architecture with
strong emphasis on ease of integration into target VLSI/FPGA application. The architecture is extremely simple
yet strong enough tool to have control over internal peripherals and arbitration upon user commands. The RTL
implementation in VHDL is targeted to Spartan-3 and Spartan-6 FPGA from Xilinx [6, 7]. The functional
verification accommodated using ModelTech ModelSim simulator by developing corresponding test-bench
VHDL with the help of advanced tool to build test benches for HDL [8].

Dr. S. R. Ganorkar et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No.06 Jun 2013 786

II. ARCHITECTURE

Figure-1 shows the architecture of a standalone command processor.

Figure 1. Stanalone Command Processor Architecture

Following Table-1 shows the minimum IOs set that are required for a Standalone Command Processor. This
includes the functional description for each of the IO that are available when command processor is seen from
top module as an entity.

TABLE I. COMMAND PROCESSOR INPUT-OUTPUTS

Sr. No
Command Processor IO

IO Port Name Direction Bits Description/Comments

1. Reset IN 1 Asynchronous Active High Reset Input

2. Clock IN 1
Clock, maximum clock can be as high as
given by synthesis result, minimum should not
be less than baud clock of serial interface used

3. RxRdy IN 1 Strobe Output from Serial interface

4. D8_in IN 8 8 bit command input

5. NN Out OUT 8
Numerical Offset Value out can be used to
address particular range of memories.

6. N_Select OUT 1 This output Sets whenever offset is set by user

7.
Manual/Auto

–Mode
OUT 1

Decoded Status Output that indicates the mode
of Operation if it is set to Auto Mode (1) or
Manual mode (0)

8.
Min-Max

Mode
OUT 1

Decoded Status Output that indicates the mode
of Operation if it is set to Max Mode (1) or
Min mode (0), this will internally affect the
offset value by predetermine fashion

9. Reserved OUT 1

This status is reserved as an effect to
additional set of command. The reserved
single status bit can be extended up to more
than 50, in effect to support more commands
and corresponding control activities

A. Command Fetch/Feed Unit

First, there is always need to fetch a command before it is decoded and executed. In this architecture, the
simplicity here that it has command-feed mechanism instead of command fetch. The command fetch mechanism
depends heavily on an internal memory counter (which is used as memory pointer/program counter) to fetch the
instructions as commands. However, in order to enable the standalone command processor to function as a slave
mode, there is provision to feel the command. This command as it enters the internal command feed registers,
there is immediate combinatorial decoder acting on the command byte(s). The command feed mechanism is
achieved by use of shift register that is bit wide and of 4 location in depth. Thus a 4 X 8 bit serial in is converted
to 4 parallel-bytes internally.

B. Command Decoder Unit

Since the command feed mechanism is pure sequential and it hold the command that was fed by user over
its, interface the decoding is a combinatorial circuit. This decode action is by achieved use of set of four
magnitude comparators. Each magnitude comparator is independent of each other and each work on its own 8-
bit of command field. However, in order to incorporate the further decoding of the command that is useful for

Dr. S. R. Ganorkar et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No.06 Jun 2013 787

the execution module, all these individual fields are also taking into account. Entire functionality of decodes is
ANDed to match the symbolic code along with the interpretation of actions that is required over the operand. A
set of multiplexers and de-multiplexer are effective in decoding of the commands.

C. Command Executor & Register

Executor unit is an implementation of state-machines which is capable of registering the operand value
(byte) in more accurate meaningful way from execution angle. Thus the role of registers in this unit is also to
hold the states, and decoded values for precise execution. Status bits are also output of command executor unit.
Those status bit indicate the state and corresponding control command that is being activated (Set) or
deactivated (Reset). From the above table that generates the offset value NN, it is an outcome from operand of
the command field.

D. Timer unit

The timer unit is a hardware module that is implemented as a counter. This counter is enabled when typical
set-case for auto-mode is enabled. The generated events of counter are used to change the offset value
automatically. One of the obvious predetermined fashion to generate the offset value in an incremented order with
the use of additional stage of counter. Integrating or switching over to other methodologies for use of Timer unit
to meet the application need should be seamless.

III. COMMAND FORMAT AND DESCRIPTION

Command format is described with the help of the field it has. The format of the command and its fields are
given below.

START CMD OPRAND END

 Each field is of 8 bits. The command begins with a START field and always ends with END field. The
content of these fields are fixed and hexadecimal 53H value is used for START field. This value is for capital S
from ASCII table. Similarly the END field is ASCII value for E, which is 45H.

The CMD field for simplicity can be used from ASCII table of Capital letters, Small letters and other symbol
including ASCII values representing numbers. Thus from the above top level IOs the CMD field is predetermined
as given below.

 Manual Mode : A (ASCII 41Hex)

 Auto Mode : B (ASCII 42Hex)

 Max Mode : C (ASCII 43Hex)

 Min Mode : D (ASCII 44Hex)

 Reserved (Set) : E (ASCII 45Hex)

 Reserved (Reset) : F (ASCII 46Hex)

The CMD is an OPCODE values which can be further extended to more symbols or any value within a limit
of 8 bits.

The OPRAND field is of 8 bit wide and hence there is luxury to exercise the set of operands as any value
within a limit of 8 bits.

A typical command is as illustrated as follows.

‘S’ ‘A’ ‘0x01’ ‘E’

From the command illustration above, this is command to set a manual mode and assign the initial offset
value for the first range of memory location to process data (process data may include write data into or read from
the range that corresponds to the first offset of memory). As seen from the command the S is Start field, A is
ASCII value for a command that is internally decoded & executed. The field 0x01 is a hexadecimal value for the
operand which is followed by and End field.

On the hardware the command processor was implemented in Xilinx Spartan-6 FPGA. The setup included
RS232 interfaced to COM port of PC/Laptop for driving serial commands.

RESULT

 The results are from functional and synthesis result targeting for XILINX FPGA. The functional results
are achieved by simulation of the HDL model but constructing the test bench for the RTL at each level in the
hierarchy of standalone command processor unit. The simulation results are shown from following snapshot of
Modelsim simulator in Figure-3.

Dr. S. R. Ganorkar et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No.06 Jun 2013 788

Figure 2. Simulation Waveforms

In the simulation waveforms we see that there is change in a state whenever the complete frame of a command
is received, decoded and available for further execution and action for the on-chip peripheral. This includes
set/reset of certain internal registers, enabling of automated timer based activity or even requesting to tap certain
data from the nets and/or register states as shown in table 2.

The synthesis results show fair are consumption of very few and to the point use of the flip flips and LUTs
from the architecture resources of FPGA device. Maximum operating speed is dependent on the critical path for
any semiconductor based sequential architecture and hence there is a significant timing optimization achieved that
makes the stand alone processor to work as even more than 266MHz of clock frequency as show.

TABLE II. SYNTHESIS RESULT

Device Utilization Summary (estimated values) [-]

Logic Utilization Used Available Utilization

Number of Slice Registers 64 18224 0%

Number of Slice LUTs 69 9112 0%

Number of fully used LUT-FF pairs 49 84 58%

Number of bonded IOBs 54 232 23%

Number of BUFG/BUFGCTRLs 2 16 12%

Timing results:

 Minimum period: 3.755 ns

 Maximum Frequency: 266.326 MHz

 Minimum input arrival time before clock: 3.991 ns

 Maximum output required time after clock: 7.472 ns

CONCLUSION

 The Standalone command processor is ultra simple command processor for on-chip peripheral control
and arbitration. The debugging and testing is an extended use for in system hardware debugging and tapping for
the values from nets and register states. The approach servers a very cost effective way in the sense from its
simple architecture point of view and so also the device resources that are needed for its implementation. Though
each command is a set of 4 bytes, and each byte can be driven in as an eight bit parallel input, a sequence of byte
as commands needs to be fed serially/sequentially. Hence, commands can be fed through any of suitable

Dr. S. R. Ganorkar et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No.06 Jun 2013 789

interface as convenient including USB, UART, I2C or SPI interface which cater bit-wide serial i/o. One of a key
factor of the command processor architecture carried out here does not have any ALU. This is because Arithmetic
and Logical operations are redundant for the control activity in one of the application to which the commands and
its processors were designed. ALU integration is left for future scope of this work. In debugging there is need to
feed the response & status back to host (master), which can be done through the transmitter unit of same interface
which is used to drive commands.

ACKNOWLEDGMENT

I'd like to thank Dr. Ajay D. Jadhav, (P.G. Program Head) and Prof. U. R. More for their insightful comments
and constructive suggestions to improve the quality of work.

REFERENCES
[1] Bhandari, S.U. ; Int. Inst. of Inf. Technol., Pune ; Pujari, S. ; Subbaraman, S., "Embedding Driver for a Peripheral Interface on FPGA",

Emerging Trends in Engineering and Technology, 2008. ICETET '08. First International Conference (IEEE), Page: 975 - 978
[2] Prof. Shashank Pujari, "Embedding Soft processor based USB device driver on FPGA", International Journal of Scientific &

Engineering Research Volume 2, Issue 9, September-2011 ISSN 2229-5518
[3] OpenOCD User's Guide of the Open On-Chip Debugger (OpenOCD) http://openocd.sourceforge.net/doc/html/index.html release

0.8.0-dev, dated 9 June 2013
[4] Infineon TriCore Family On-Chip Emulation, Technical Notes, http://www.isystem.com
[5] Dr. Preeti Bajaj and Dinesh Padole, G.H. Raisoni College of Engineering, Nagpur, India, Design of an Embedded Controller for Some

Applications of an Automotives, New Trends and Developments in Automotive System Engineering, Edited by Prof. Marcello
Chiaberge, ISBN 978-953-307-517-4, 08, January, 2011

[6] http://www.xilinx.com
[7] Digilent -Spartan-6 Nexys-3 Reference Manual - http://www.digilentinc.com/
[8] hoTBench.net http://www.hotbench.net/

AUTHORS’ PROFILE

S. R. Ganorkar
Born on August 6; 1965.He has completed his ME in Adv. Electronics Engineering. His
research interests are in Artificial Neural Network and Image Processing. He has 24
years of experience, 13 year in Industrial and 11 years of teaching experience. He is
presently working as Associate Professor at E & TC department at Sinhgad College of
Engineering, Pune. He has published 12 papers in International journal, 13 papers in
International conference and 40 papers in national conference. He is life member of
ISTE, New Delhi. He is also a fellow of IETE, New Delhi.
email address: srganorkar.scoe@sinhgad.edu

Amol Bharat Ranadive
Amol Bharat Ranadive has completed is BE in Electronics Engineering from Walchand
Institute of Technology, under Shivaji University Kolhapur. He has more than 12 years
of experience in R&D in VLSI/FPGA designing. He is pursuing Second Year of M.E.
in Electronics Engineering in Digital Systems at SCOE, affiliated to University of Pune.
Email address: ranadive.amol@gmail.com

Dr. S. R. Ganorkar et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No.06 Jun 2013 790

	Standalone Command Processor –Onchip Peripheral control and arbiteration
	Abstract
	Keywords
	I. INTRODUCTION
	II. ARCHITECTURE
	III. COMMAND FORMAT AND DESCRIPTION
	RESULT
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	AUTHORS’ PROFILE

