
Generation of Addition Chain using
Deterministic Division Based Method

Mr. K. Mani
Associate Professor in Computer Science
Nehru Memorial College, Puthnampatti

Trichy, INDIA – 621 007
nitishmanik@yahoo.com

Abstract— Efficiency of a cryptosystem depends not only on the security it provides, but also it increases
the operational speed thereby it reduces the time taken for encryption and decryption. In most number-
theoretic cryptographic algorithms like RSA, ElGamal, Massey-Omura etc., the encryption and
decryption functions often involve raising large elements (xe mod n) of group fields GF(2n) or large
powers (exponents). If they are not properly implemented, they increase the operational time which
ultimately lead to customer dissatisfaction. Thus, group exponentiation has received much attention by
the researchers in recent times owing to their central role in modern cryptography and it is effectively
computed using the concept of addition chain. Several deterministic and stochastic algorithms have been
proposed in literature to generate the shortest addition chains. Normally, stochastic algorithms produce
the optimal addition chains but it is not obtained from the single run which is a time consuming process.
Thus, a deterministic algorithm has been proposed which is simply based on division in this paper and it
is compared with other deterministic and stochastic algorithms.

Keywords – public-key cryptography, modular exponentiation, and addition chain

I. INTRODUCTION

The concept of public-key cryptography was presented by Whitefield Diffie and Martin Hellman at National
Computer Conference[1]. A few months later, their seminal paper “New Directions in Cryptography” was
published[2]. Since 1976, numerous public-key cryptography algorithms have been proposed. A public-key
cryptographic system consists of a plaintext message space M, a ciphertext message space C, an encryption key
space K, the decryption key space K´, an efficient key generation algorithm G: N→KK´, an efficient

encryption algorithm E: MK→C, and an efficient decryption algorithm D: CK-1→M. For kK, xM, and

yC, we denote by y=ke(E(x)) and x=kd(D(y)). In public-key cryptosystem, encryption and decryption

processes use different keys; i.e., for every keK, there exists kdK´ and ke≠kd, where ke and kd are encryption
and decryption key respectively. The security of the public-key cryptosystem lies in the hardness of some
underlying mathematical problem which is believed to be computationally difficult.

Most of the public-key cryptosystems like RSA, ElGamal, etc., modular exponentiation is the cornerstone
operation which plays a vital role in performing encryption/decryption operations. They often involve raising
large elements of some group fields to large powers. Successive multiplication is normally used to perform
modular multiplication but it is a time consuming process. For example, to compute xe based on paper-and-
pencil method, it requires (e-1) multiplication of x. i.e x1→x2→x3→…→xe-1→xe.

Fast exponentiation is becoming increasingly important with the widening use of encryption. In order to
improve the time requirements of the encryption process, minimizing the number of multiplication is essential.
Several authors have proposed the fast modular exponentiation like left-to-right, right-to-left, multi-
exponentiation by interleaved exponentiation, sliding window and window NAF exponential methods etc. A
large number of field exponentiation algorithms have been reported in the literature. Some of the known
algorithms are: binary, m-ary, adaptive m-ary, power tree, factor method, etc. But these algorithms have a
common problem that they strive to keep the number of required multiplications to compute the exponent as low
as possible through the use of a particular heuristic. Also, the said algorithms are not considered to yield an
optimal addition chain for every possible field size.

It is a known fact that larger the size of the field utilized, harder the problem of optimizing the computation
of the field exponentiation. This is because a heuristic strategy is normally used to find the optimal addition
chain for hard optimization problems. Since these problems have huge search spaces, they do not provide the
guarantee on the quality of the solutions. Normally, a heuristic method starts from a non-optimal solution
(partial solution) and iteration. After performing some iteration, it improves the solution until a reasonable valid
solution could be achieved. Thus, to improve the partial solution which is considered at the initial stage, either
deterministic or probabilistic search criteria is used.

Several methods are available to generate the addition chain of minimal length. They are classified into two
types namely: deterministic and evolutionary algorithms. In deterministic type of algorithms, steps used are
predetermined. Examples of these types include binary, the factor, the window method, and sliding window

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 553

methods. Evolutionary algorithms are stochastic optimization methods which are inspired by the idea of either
natural evolution or social behaviour. Examples of these types include: Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Immune System (AIM) [3].

In deterministic type, given a fixed set of initial conditions, the optimized solution obtained by a
deterministic heuristic will remain unchanged from run to run. On the other hand, repeated executions of
stochastic heuristic may produce different final solutions. When compared with deterministic heuristic,
stochastic heuristic like GA (Genetic Algorithm) and EP (Evolutionary Programming) always produce the
optimal addition chain for the given exponent. Thus, there is a need to develop a deterministic algorithm based
on merely division called as Division Based Method (DBM) which would generate the shortest addition chain as
generated by stochastic heuristic.

The rest of the paper is organized as follows. The concept of addition chain is discussed in section 2.
Section 3 shows the proposed division based method to generate the addition chains. A comparative analysis of
addition chains generated by the proposed method and the existing methods for some soft and hard exponents is
discussed in section 4. Finally,Section 5 ends with conclusion.

II. ADDITION CHAIN

To understand the relevance of the work, the following mathematical concepts are used.

Definition (Modular Exponentiation): Let α be an integer in the range [1, n-1], and e an arbitrary positive
integer. Then, modular exponentiation is defined as the problem of finding the unique integer that satisfies the
equation:

 β = α e mod n (1)

It is noted that addition chains are normally used to find the correct sequence of multiplications in performing
exponentiation [3].

Definition (Addition Chain): The problem of determining the correct sequence of multiplications required
for performing a modular exponentiation can be elegantly formulated by using the concept of addition chains.
Formally, it is defined as:

An addition chain [4] for an integer e is a sequence of integers

 1= a0, a1, a2, …,ar = e (2)

with the property that

 ai =aj + ak, for some k ≤ j< i, for all i = 1, 2, 3,…,r (3)

i.e., the first number is numbered one; every subsequent number is the sum of two early numbers and e
occurs at the end of the chain.

The shortest length (l) for which there exists an addition chain for e is denoted by l(e). For the given
exponent, it is possible to generate several addition chains, and the smallest length is better. If the shortest
addition chain is found, then it will be useful to reduce the number of multiplications required in the
exponentiation. Based on the shortest addition chain, modular exponentiation is performed very fast. Finding the
best addition chain is very difficult, but it is enough to find near optimal addition chain. However, for the given
integer, finding at least one of the shortest addition chains is an NP-hard problem. For example, the possible
addition chains for the integer e (exponent) = 6271 is

(i) 1-2-4-8-10-20-30-60-90-180-360-720-1440-2880-5760-5970-6150-6240-6270-6271

(ii) 1-2-3-6-12-24-48-96-292-384-768-1536-3072-6144-6240-6264-6270-6271

(iii) 1-2-3-5-10-20-23-46-92-194-298-391-782-1564-1567-3134-6168-6271

The length of the addition chain for (i), (ii), and (iii) are 19, 17, and 17 respectively. The shortest length
l(6271) is 17.

III. PROPOSED DIVISION BASED METHOD (DBM)

In this work, to generate an addition chain for the given exponent e, e is divided by 2 and only the integral
part of the division is considered. Let it be d1. This d1 is again divided by 2 to get d2. The process is repeated
until e is reduced to 1. Let it be dn. Reverse the quotients as d1, d2, d3… dn-1, dn. Assign e1= dn, e2 = dn-1, e3= dn-2…
en-1 =d1, and en = e. Let a0, a1, a2 …ab`… am-3, am-2, am-1, am,… ar-3, ar-2, ar-1, ar = e are the numbers which are to be
computed in the addition chain. Without loss of generality, let a0=1 and a1= 2. To obtain a3, it is either 3 or 4
depending on the value of e3. If a3 is 3, then a4 is either 5 or 6. If a3 =4, then a4 is either 6 or 8 etc. In this way, a
suitable addition chain of up to 10 is formed. The possible addition chains are:

 1→2→3→5→7; 1→2→3→5→8; 1→2→3→5→10; 1→2→4→8

 1→2→3→6→9; 1→2→4→5→10; 1→2→4→5→9

These addition chains are called as base addition chains in the proposed model. For example, if e=20, then
d1=10; d2=5; d3=2; d4=1. Then, the base addition chain is 1→2→3→5→10. By selecting the suitable base
addition chain, the rest of numbers in the addition chain are determined as follows.

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 554

Let the last number in the base addition chain is ab and select the suitable el which is exactly or nearer to ab.
To obtain the next number ab+1, ab is multiplied by 2. i.e. ab+1= ab×2. Compare ab+1 with el+1 and find the difference
(d). If d is zero, then ab+2 = ab+1 * 2. Otherwise, check whether the difference is found in the base addition chain or
not. If it is found, then ab+2 = (ab+2 + d). Otherwise, choose the number from the base addition chain which is
nearer to d. It is noted that in some situation the number 1 or 2 in the base addition chain may be nearer to d. If it
is the case, it could be avoided because it may increase the length of the addition chain. Thus, after two or three
numbers in the addition chain are generated, the difference d=1 or d=2 may disappear. The process is repeated
until an= e or an-1+d= e.

If the exponent e is an even number, then it is enough to generate the addition chain for e/2. In that case, to
obtain the addition chain for e, e/2 is multiplied by 2. Thus, if l(e/2)=r, then l(e)= r+1. The generated addition
chains may be the shortest addition chain or very close to the shortest one which can greatly improve the
efficiency of modular exponentiation in RSA and other public-key algorithms. The generation of the shortest
addition chain based on the proposed division method is illustrated in algorithm 1.

Algorithm 1: Generation of Addition Chain for an Exponent e Based on DBM

/ / The proposed division based algorithm reads the exponent e and it generates the shortest addition chain for e

INPUT: exponent e

OUTPUT: addition chain ai , i →1,…,r with a1 =1 and ar = e

1. i←1; j ←1; e1= e

2. if (e % 2 = 0) then e ← int (e/2)

/ / Computation of quotients when e is divided by 2 recursively

3. do

 di ← int(e1 / 2); i ← i+1; e1← e1 / 2

 while (di ≥1)

4. k ← i; ek+1 = e

 / / assigning di to ei

5. while (k ≥ 1) do

ej ← dk; j ← j +1; k ← k -1

 end while

 / / determination of base addition chain

6. if (e%5 and e%3=0) then l ← 6; m ← 6

 base_add_chain ← (1→2→3→5→10 → 15) go to main_computation

 end if

7. for k from 3 to i

begin

if (ek =9) then

 l← k; m ← 5; base_add_chain ← (1→2→3→6→9) || (1→2→4→5→9)

else if (ek=8) then

 l ← k ; m ← 4; base_add_chain ← (1→2→4→8)

else if (ek=7) then

 l ← k; m ← 5; base_add_chain ← (1→2→3→5→7)

else if (ek=6) then

 l ← k; m ← 4; base_add_chain ← (1→2→3→6)

else if (ek=5) then

 l ← k; m ← 4; base_add_chain ← (1→2→3→5)

else (ek =4) then

 l ← k; m ← 3; base_add_chain ← (1→2→4)

end if

 end for

main_computation:

8. add_chain ← base_add_chain

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 555

9. while (am ≠ e) do

 begin

d ← el-am

if (d=0) then

 m ← m+1; l = l +1; am← am-1 × 2; add_chain ← add_chain || am; s1← e-2 ×am

 end if

 if((d =1) and (am = e-1)) then

 m ← m+1; am ← a m-1+ d; add_chain ← add_chain || am; am+1← e

 exit from while loop

 end if

 if((d >1) and (s1 in base_add_chain) then

 m ← m+1; am← am-1+ s1; add_chain ← add_chain || am

 exit from the do loop

 end if

 if((d >2) and (d in base_add_chain) then

 m ← m+1; am← am-1+ d; add_chain ← add_chain || am

 end if

 end while

10. l(e)=length(add_chain)

11. return (add_chain, l(e))
A. Generation of Addition Chains Based on DBM – Examples
i. To determine the addition chain for 31

Here, e=31, then d1= 31/2=15, d2=15/2=7, d3=7/2=3, and d4=3/2=1. Correspondingly, e1=1, e2=3, e3=7, e4=15,
and e5=e=31. The suitable base addition chain which is ≤10 is 1→2→3→5→7. Thus, a1=1, a2=2, a3=3, a4=5, and
a5=7. The last number in the base addition chain is 7 and the corresponding index value (m) is 5. The number
(a5=7) found in ei is e3=7 (exactly) and the corresponding index value (l) is 3. The difference d=e3–a5 =0. Since
d=0, compute a6=7×2=14. Now e4=15 and d=e4 – a6=1. Since d=1 and a6 or a6+1≠ e, compute a7=a6×2=28. Now,
e5=e=31(the given exponent), d=e5–a7 is computed as 3. Since 3 is found in the base addition chain and also
a8=28+3=e(=31), the process is stopped. The shortest addition chain for 31 is: 1→2→3→5→7→14→28→31 and
l(31) is 7.

ii. To determine the addition chain for 349

Here, e=349, then d1=349/2=174, d2=174/2=87, d3=87/2=43, d4=43/2=21, d5=21/2=10, d6=10/2=5,
d7=5/2=2, and d8=2/2=1. Correspondingly, e1=1, e2=2, e3=5, e4=10, e5=21, e6=43, e7=87, e8=174, and e9=e=349.
The suitable base addition chain which is ≤10 is 1→2→3→5→10. Thus, a1=1, a2=2, a3=3, a4=5, and a5=10. The
last number in the base addition chain is 10 and the corresponding index value (m) is 5. The number a5=10 is
found in ei, is e4=10 and the corresponding index l is 4. Find d=e4–a5=0. Since d=0, compute a6=10×2=20. Now
e5=21. Find d=e5–a6=1. Since, d=1 and a6 or a6 +1 ≠ e, d=1 is not considered at this stage. Compute a7=a6×2=40.
Now e6=43. Find d=e6–a7=3. Since 3 is found in the base addition chain a8=a7+3=43. Compute a9=a8×2=86.
Now e7=87 and d=e7– a9=1. Since, d=1 and a9 +1 or a9 ≠ e. Compute a10=86×2=172. Now, e8=174 and d=e8–
a10=2. Since d=2 and a10+2 ≠e. Compute a11=172×2=344. Now e9=379. The difference d=e9–a11=5 which is
found in the base addition chain. Thus, a12 is computed as: a12=344+5=349. Since a12=e9=e=349(the given
exponent) the process is stopped. The shortest addition chain for 349 is:
1→2→3→5→10→20→40→43→86→172→344→349 and l(349)=11. For other exponents the addition chains
are generated in this manner.

IV. RESULTS AND DISCUSSION

Table 1 shows the comparison of addition chains generated by the DBM and the addition chains illustrated
in the literature [5-9]. Tables 2 and 3 show that the length of addition chains generated by the proposed method
for field exponentiation computations are almost same with additions chains generated by GA[10] and EP [11]
respectively for small exponent. But, for large exponents, the proposed method generates addition chain with
thin increase (at most three) in length when compared with GA and EP. Though there is a thin increase in length
for some large exponent, these exponents are hard to optimize.

Table 4 shows the length of the optimal addition chains (beyond that reducing the length of the addition
chain for the exponents is not possible) given in the literature [3]. Table 5 gives the addition chains generated

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 556

by the proposed DBM. The proposed method also yields the same length of the addition chains as illustrated in
Table 4.

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 557

The proposed method may gain some attention because it is deterministic whereas the other two approaches
GA and EP are evolutionary algorithms. Further, to determine the optimum addition chain for the given
exponent using evolutionary algorithms, the code is run for several times, preferably 30 independent times and
the optimal addition chain for an exponent is obtained out of 30 independent runs.

The reason behind the proposed approach generates the optimal addition chain for the given exponent is that
each time the exponent is reduced to half and the process is repeated until the exponent is reduced to one. To
form the addition chain, the process starts with base addition chain to get the next number of the addition chain,
and the last number in the base addition chain is multiplied by 2. The number obtained in this way is compared
with numbers involved in the addition with the quotients obtained from the exponents when it is divided by two.
If the difference between the two numbers is less than 10 and if it is found in the base addition chain, the
difference is added to the number last generated in the base addition chain so that the vast difference between
the two numbers could be avoided. Since, this checking process is performed at each stage; ultimately it
produces the optimal addition chain.

Table 4 shows the length of optimal addition chain for some exponents up to 512 shown in [3]

length Solutions

1 {2}

2 {3,4}

3 {5,6,8}

4 {7,9,10, 12,16,}

5 {11, 13, 14, 15, 17, 18, 20, 24, 32}

6 {19, 21, 22, 23, 25, 26, 27,28,30,33,34,36,40,48,64}

7
{29, 31, 35, 37, 38, 39, 41, 42, 43, 44,45,46,49,50,51,52,

54,56,60,65,66,68,72,80,96,128}

8
{47,53,55,57,58,59,61,62,63,67, 69,70,73,74,75,76,77,78,81,82,
83,84,85,86,88,90,92,97,98, 99,100,102,104,108,112,120,129,

130,132,136,144,160,192,256}

9

{71,79,87,89,91,93,94,95, 101,103,105,106,107,109,110,111,113,114,
115,116,117,118,119,121,122,123,124,125, 126,131,133,134,135,137,
138,140,145,146,147,148,149,150,152,153,154,156,161,162,163,164,
165,166,168,170,172,176,180,184,193,194,195,196,198,200,204,208,

216,224,240,257,258,260,264,272,288,320,384,512}

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 558

Table 5: Generation of addition chain based on proposed DBM for small exponents

Exponent

(e)
Addition Chain

Length

l(e)

Exponent

(e)
Addition Chain

Length

l(e)

2 1-2 1 37 1-2-3-6-9-18-36-37 7

3 1-2-3 2 38 1-2-3-6-9-18-19-38 7

4 1-2-4 2 39 1-2-3-6-9-18-36-39 7

5 1-2-3-5 3 41 1-2-3-5-10-20-40-41 7

6 1-2-3-6 3 42 1-2-3-5-10-20-21-42 7

8 1-2-4-8 3 43 1-2-3-5-10-20-40-43 7

7 1-2-3-5-7 4 44 1-2-3-5-10-11-22-44 7

9 1-2-3-6-9 4 45 1-2-3-5-10-20-40-45 7

10 1-2-3-5-10 4 46 1-2-3-5-10-20-23-46 7

12 1-2-3-6-12 4 49 1-2-3-6-12-24-48-49 7

16 1-2-4-8-16 4 50 1-2-3-6-12-24-25-50 7

11 1-2-3-5-10-11 5 51 1-2-3-6-12-24-48-51 7

13 1-2-3-6-12-13 5 52 1-2-3-6-12-13-26-52 7

14 1-2-3-5-7-14 5 54 1-2-3-6-12-24-48-54 7

15 1-2-3-5-10-15 5 56 1-2-3-5-7-14-28-56 7

17 1-2-4-8-16-17 5 60 1-2-3-5-10-15-30-60 7

18 1-2-3-6-9-18 5 65 1-2-4-8-16-32-64-65 7

20 1-2-3-5-10-20 5 66 1-2-4-8-16-32-33-66 7

24 1-2-3-6-12-24 5 68 1-2-4-8-16-17-34-68 7

32 1-2-4-8-16-32 5 72 1-2-3-6-9-18-36-72 7

19 1-2-3-6-9-18-19 6 80 1-2-3-5-10-20-40-80 7

21 1-2-3-5-10-20-21 6 96 1-2-3-6-12-24-48-96 7

22 1-2-3-5-10-11-22 6 128 1-2-4-8-16-32-64-128 7

23 1-2-3-5-10-20-23 6 47 1-2-3-5-10-20-40-45-47 8

25 1-2-3-6-12-24-25 6 53 1-2-3-5-12-13-26-52-53 8

26 1-2-3-6-12-13-26 6 55 1-2-3-6-12-24-48-54-55 8

27 1-2-3-6-12-24-27 6 57 1-2-3-5-7-14-28-56-57 8

28 1-2-3-5-7-14-28 6 58 1-2-3-5-7-14-28-29-58 8

30 1-2-3-5-10-15-30 6 59 1-2-3-5-7-14-28-56-59 8

33 1-2-4-8-16-32-33 6 61 1-2-3-5-10-15-30-60-61 8

34 1-2-4-8-16-17-34 6 62 1-2-3-5-10-15-30-31-62 8

36 1-2-3-6-9-18-36 6 63 1-2-3-5-10-15-30-60-63 8

40 1-2-3-5-10-20-40 6 67 1-2-4-8-16-32-33-66-67 8

48 1-2-3-6-12-24-48 6 69 1-2-4-8-16-17-34-68-69 8

64 1-2-4-8-16-32-64 6 70 1-2-4-8-16-17-34-35-70 8

29 1-2-3-5-7-14-28-29 7 73 1-2-3-6-9-18-36-72-73 8

31 1-2-3-5-10-15-30-31 7 74 1-2-3-6-9-18-36-37-74 8

35 1-2-4-8-16-17-34-35 7 75 1-2-3-6-9-18-36-72-75 8

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 559

V. CONCLUSION

The proposed division based addition chain generates the optimal addition chains for the small exponents
which are exactly matched with addition chains generated by the latest methods. But, for some large exponents,
there is very small increase in chains length (at most three). This result in turn reduces the encryption/decryption
time due to the fact that most of the public-key algorithms exponentiation operation plays a key role in
encryption/decryption process where the number of multiplications involved in the given exponent is equal to
the length of the addition chain. Also, the proposed method is simple, deterministic and is based on simply the
division.

REFERENCES
[1] Whitfield Diffie and Martin E. Hellman, “Multiuser Cryptographic Techniques”, Proceedings of AFIPS National Computer

Conference, 1976, pp. 109-112.
[2] Whitefield Diffie and Martin E. Hellman, “New Directions in Cryptography“, IEEE Transactions on Information Theory, 22(6),

November 1976, pp. 644-654.
[3] N.Cruz-Cortés, F. Rodriquez-Hanriquez, and C. A. Coello-Coello, “An artificial immune system heuristic for generating short-

addition chains”, IEEE transactions on Evolutionary Computation, 12(1):1-24, February 2008.
[4] D. Knuth, The Art of Computer Programming–Semi Numerical Algorithms, Vol. 2, Addison-Wesley, Third Edition, 1998.
[5] Colin D. Walter, “Exponentiation Using Division Chains”, IEEE transactions on Computers, Vol. 47, No. 7, 1998.
[6] Noboru Kunihiro and Hirosuke Yamamoto, “New Methods for Generation of Short Addition Chains”, IEICE Trans. Fundamental,

Vol. E83, No. 1, 2000.
[7] Noboru Kunihiro and Hirosuke Yamamoto, “Optimal addition chains classified by Hamming weight”, IEICE, Technical Report,

ISEC96-74, 1997.
[8] Nadia Nédjah and Luiza Macedo Mourelle, “Fast Pre-Processing for the Sliding Window Method Using Genetic Algorithms”,

International Journal of Computers, Systems and Signals, Vol. 4, No. 2, 2003.
[9] R. Begeron, J. Berstel, S. Brlek, and C. Duboc, “Addition chains using continued fractions”, Journal of Algorithms, No. 10, 1989, pp.

403-412.
[10] Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, Raúl Juárez-Morales, and Carlos A. Coello Coello, “Finding Optimal Addition

Chains Using a Genetic Algorithm Approach”, Springer-Verlag, 2005, pp. 208-215.
[11] S. Domínguez-Isidro and E. Mezura-Montes, “An Evolutionary Programming Algorithm to Find Minimal Addition Chains”, I

Congreso Internacional de Ingeniería Electrónica, Instrumentación y Computación, de Junio del, Minatitlán Veracruz, México, 2011.

Mr. K. Mani / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 560

	Generation of Addition Chain usingDeterministic Division Based Method
	Abstract
	Keywords
	I. INTRODUCTION
	II. ADDITION CHAIN
	III. PROPOSED DIVISION BASED METHOD (DBM)
	IV. RESULTS AND DISCUSSION
	V. CONCLUSION
	REFERENCES

