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Abstract— Efficiency of a cryptosystem depends not only on the security it provides, but also it increases
the operational speed thereby it reduces the time taken for encryption and decryption. In most number-
theoretic cryptographic algorithms like RSA, ElGamal, Massey-Omura etc., the encryption and
decryption functions often involve raising large elements (x* mod n) of group fields GF(2") or large
powers (exponents). If they are not properly implemented, they increase the operational time which
ultimately lead to customer dissatisfaction. Thus, group exponentiation has received much attention by
the researchers in recent times owing to their central role in modern cryptography and it is effectively
computed using the concept of addition chain. Several deterministic and stochastic algorithms have been
proposed in literature to generate the shortest addition chains. Normally, stochastic algorithms produce
the optimal addition chains but it is not obtained from the single run which is a time consuming process.
Thus, a deterministic algorithm has been proposed which is simply based on division in this paper and it
is compared with other deterministic and stochastic algorithms.
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l. INTRODUCTION

The concept of public-key cryptography was presented by Whitefield Diffie and Martin Hellman at National
Computer Conference[1]. A few months later, their seminal paper “New Directions in Cryptography” was
published[2]. Since 1976, numerous public-key cryptography algorithms have been proposed. A public-key
cryptographic system consists of a plaintext message space M, a ciphertext message space C, an encryption key

space K, the decryption key space K’, an efficient key generation algorithm G: N—KxK", an efficient
encryption algorithm E: MxK—C, and an efficient decryption algorithm D: CxK*—M. For keK, xeM, and
yeC, we denote by y=k¢(E(x)) and x=ky4(D(y)). In public-key cryptosystem, encryption and decryption

processes use different keys; i.e., for every k. K, there exists kye K" and ke#kgy, where k. and kq are encryption
and decryption key respectively. The security of the public-key cryptosystem lies in the hardness of some
underlying mathematical problem which is believed to be computationally difficult.

Most of the public-key cryptosystems like RSA, EIGamal, etc., modular exponentiation is the cornerstone
operation which plays a vital role in performing encryption/decryption operations. They often involve raising
large elements of some group fields to large powers. Successive multiplication is normally used to perform
modular multiplication but it is a time consuming process. For example, to compute x° based on paper-and-
pencil method, it requires (e-1) multiplication of x. i.e X! —>x*—x*—"—x*1 X",

Fast exponentiation is becoming increasingly important with the widening use of encryption. In order to
improve the time requirements of the encryption process, minimizing the number of multiplication is essential.
Several authors have proposed the fast modular exponentiation like left-to-right, right-to-left, multi-
exponentiation by interleaved exponentiation, sliding window and window NAF exponential methods etc. A
large number of field exponentiation algorithms have been reported in the literature. Some of the known
algorithms are: binary, m-ary, adaptive m-ary, power tree, factor method, etc. But these algorithms have a
common problem that they strive to keep the number of required multiplications to compute the exponent as low
as possible through the use of a particular heuristic. Also, the said algorithms are not considered to yield an
optimal addition chain for every possible field size.

It is a known fact that larger the size of the field utilized, harder the problem of optimizing the computation
of the field exponentiation. This is because a heuristic strategy is normally used to find the optimal addition
chain for hard optimization problems. Since these problems have huge search spaces, they do not provide the
guarantee on the quality of the solutions. Normally, a heuristic method starts from a non-optimal solution
(partial solution) and iteration. After performing some iteration, it improves the solution until a reasonable valid
solution could be achieved. Thus, to improve the partial solution which is considered at the initial stage, either
deterministic or probabilistic search criteria is used.

Several methods are available to generate the addition chain of minimal length. They are classified into two
types namely: deterministic and evolutionary algorithms. In deterministic type of algorithms, steps used are
predetermined. Examples of these types include binary, the factor, the window method, and sliding window

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 553



Mr. K. Mani / International Journal of Computer Science & Engineering Technology (1JCSET)

methods. Evolutionary algorithms are stochastic optimization methods which are inspired by the idea of either
natural evolution or social behaviour. Examples of these types include: Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Immune System (AIM) [3].

In deterministic type, given a fixed set of initial conditions, the optimized solution obtained by a
deterministic heuristic will remain unchanged from run to run. On the other hand, repeated executions of
stochastic heuristic may produce different final solutions. When compared with deterministic heuristic,
stochastic heuristic like GA (Genetic Algorithm) and EP (Evolutionary Programming) always produce the
optimal addition chain for the given exponent. Thus, there is a need to develop a deterministic algorithm based
on merely division called as Division Based Method (DBM) which would generate the shortest addition chain as
generated by stochastic heuristic.

The rest of the paper is organized as follows. The concept of addition chain is discussed in section 2.
Section 3 shows the proposed division based method to generate the addition chains. A comparative analysis of
addition chains generated by the proposed method and the existing methods for some soft and hard exponents is
discussed in section 4. Finally,Section 5 ends with conclusion.

I1.  ADDITION CHAIN

To understand the relevance of the work, the following mathematical concepts are used.

Definition (Modular Exponentiation): Let a be an integer in the range [1, n-1], and e an arbitrary positive
integer. Then, modular exponentiation is defined as the problem of finding the unique integer that satisfies the
equation;

B=a®modn (1)

It is noted that addition chains are normally used to find the correct sequence of multiplications in performing
exponentiation [3].

Definition (Addition Chain): The problem of determining the correct sequence of multiplications required
for performing a modular exponentiation can be elegantly formulated by using the concept of addition chains.
Formally, it is defined as:

An addition chain [4] for an integer e is a sequence of integers
1=ag, a3, @, ...,.&r =€ (2)
with the property that
a; =a;+ a, forsome k <j<i,foralli=1,2,3,...,r 3)
i.e., the first number is numbered one; every subsequent number is the sum of two early numbers and e
occurs at the end of the chain.

The shortest length (I) for which there exists an addition chain for e is denoted by I(e). For the given
exponent, it is possible to generate several addition chains, and the smallest length is better. If the shortest
addition chain is found, then it will be useful to reduce the number of multiplications required in the
exponentiation. Based on the shortest addition chain, modular exponentiation is performed very fast. Finding the
best addition chain is very difficult, but it is enough to find near optimal addition chain. However, for the given
integer, finding at least one of the shortest addition chains is an NP-hard problem. For example, the possible
addition chains for the integer e (exponent) = 6271 is

(i) 1-2-4-8-10-20-30-60-90-180-360-720-1440-2880-5760-5970-6150-6240-6270-6271

(i) 1-2-3-6-12-24-48-96-292-384-768-1536-3072-6144-6240-6264-6270-6271

(i) 1-2-3-5-10-20-23-46-92-194-298-391-782-1564-1567-3134-6168-6271

The length of the addition chain for (i), (ii), and (iii) are 19, 17, and 17 respectively. The shortest length
1(6271) is 17.

I11.  PROPOSED DIVISION BASED METHOD (DBM)

In this work, to generate an addition chain for the given exponent e, e is divided by 2 and only the integral
part of the division is considered. Let it be d;. This d; is again divided by 2 to get d,. The process is repeated
until e is reduced to 1. Let it be d,,. Reverse the quotients as d;, dy, ds... dn.g, dy. ASSign €= dy, €2 = dn.1, €3= dna. ..
en1 =d; and e;=e. Letag, a;, 8 ...8 ... 8m-3, 8m-2s 8m-1, &m,--- &3, ar.2 ar1 & = eare the numbers which are to be
computed in the addition chain. Without loss of generality, let ap=1 and a;= 2. To obtain as, it is either 3 or 4
depending on the value of ez If az is 3, then ay is either 5 or 6. If a3 =4, then a, is either 6 or 8 etc. In this way, a
suitable addition chain of up to 10 is formed. The possible addition chains are:

1-2—3—-5-7;, 1-2—»3—5—-8; 1-2—-3—-5—10; 1 -2—4—-8
1-2—»3—6—9; 1-2—4—-5—-10; 1-2—4—5—-9

These addition chains are called as base addition chains in the proposed model. For example, if e=20, then
d;=10; d,=5; ds=2; d,=1. Then, the base addition chain is 1—-2—3—5—10. By selecting the suitable base
addition chain, the rest of numbers in the addition chain are determined as follows.
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Let the last number in the base addition chain is a,and select the suitable e, which is exactly or nearer to a,.
To obtain the next number a,.; ay, is multiplied by 2. i.e. ay.1-a,X2. Compare a,.; With ey, and find the difference
(d). If d is zero, then ay., = ay+1 « 2. Otherwise, check whether the difference is found in the base addition chain or
not. If it is found, then ay.; = (ap+> + d). Otherwise, choose the number from the base addition chain which is
nearer to d. It is noted that in some situation the number 1 or 2 in the base addition chain may be nearer to d. If it
is the case, it could be avoided because it may increase the length of the addition chain. Thus, after two or three
numbers in the addition chain are generated, the difference d=1 or d=2 may disappear. The process is repeated
until a,= e or a,.,+d=e.

If the exponent e is an even number, then it is enough to generate the addition chain for e/2. In that case, to
obtain the addition chain for e, e/2 is multiplied by 2. Thus, if I(e/2)=r, then I(e)= r+1. The generated addition
chains may be the shortest addition chain or very close to the shortest one which can greatly improve the
efficiency of modular exponentiation in RSA and other public-key algorithms. The generation of the shortest
addition chain based on the proposed division method is illustrated in algorithm 1.

Algorithm 1: Generation of Addition Chain for an Exponent e Based on DBM
/1 The proposed division based algorithm reads the exponent e and it generates the shortest addition chain for e
INPUT: exponent e
OUTPUT: addition chain a;, i —1,...,rwitha; =l and a, = ¢
1. i<lj<le=¢
2. if(e%2=0)thene «—int(e/2)
/1 Computation of quotients when e is divided by 2 recursively
3. do
di<int(ey/ 2); i« i+1;e<—e1/2
while (d;>1)
4, k—i;eu=¢e
/ 1 assigning d;to ¢;
5. while (k>1)do
g« j—j+lk—k-1
end while
/ | determination of base addition chain
6. if (e%5 and e%3=0) then| «— 6; m «— 6
base_add_chain « (1-2—3—5—10 — 15) go to main_computation

end if
7. forkfrom3toi
begin
if (ex=9) then
l—k; m < 5; base_add_chain « (1-2—3—6—9) || (1—»2—4—5—9)
else if (e,=8) then
| — k;m« 4;base_add_chain « (1—-2—4—8)
else if (e,=7) then
| — K; m « 5; base_add_chain « (1-2—3—5—7)
else if (e,=6) then
| — Kk; m « 4; base_add_chain « (1-2—3—6)
else if (e,=5) then
| — k; m < 4; base_add_chain « (1»2—3—5)
else (ex=4) then
| — Kk; m « 3; base_add_chain « (1—2—4)
end if
end for

main_computation:
8. add_chain « base_add_chain
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9. while (a,#e€)do
begin
d < er-an
if (d=0) then
m «— m+1; | =1 +1; an a1 * 2; add_chain < add_chain || an; S« e-2 xan,
end if
if((d =1) and (a,, = e-1)) then
m «— m+1; ay, < a n1+ d; add_chain < add_chain || am. am+1<— €
exit from while loop
end if
if( (d >1) and ('s; in base_add_chain) then
m <« m+1; am«< am1+ S;.add_chain < add_chain || an,
exit from the do loop
end if
if( (d >2) and ( d in base_add_chain) then
m <« m+1; ap«< an¢+ d; add_chain < add_chain || a,
end if
end while
10. I(e)=length(add_chain)
11. return (add_chain, I(e))
A. Generation of Addition Chains Based on DBM — Examples
i. To determine the addition chain for 31
Here, e=31, then d;= 31/2=15, d,=15/2=7, d;=7/2=3, and d,=3/2=1. Correspondingly, e;=1, €,=3, es=7, ,=15,
and es=e=31. The suitable base addition chain which is <10 is 1—+2—3—5—7. Thus, a;=1, a,=2, a;=3, a4=5, and
as=7. The last number in the base addition chain is 7 and the corresponding index value (m) is 5. The number
(as=7) found in e; is es=7 (exactly) and the corresponding index value (l) is 3. The difference d=es;—as =0. Since
d=0, compute ag=7x2=14. Now e,=15 and d=e;— ag=1. Since d=1 and agor as+1# e, compute a;=asx2=28. Now,
es=e=31(the given exponent), d=es—a; is computed as 3. Since 3 is found in the base addition chain and also
ag=28+3=e(=31), the process is stopped. The shortest addition chain for 31 is: 1-2—3—5—7—14—28—31 and
1(31) is 7.
ii. To determine the addition chain for 349

Here, e=349, then d,=349/2=174, d,=174/2=87, d;=87/2=43, d,=43/2=21, ds=21/2=10, ds=10/2=5,
d,=5/2=2, and dg=2/2=1. Correspondingly, e;=1, e,=2, e3=5, €,=10, e5=21, es=43, €;=87, eg=174, and e;=e=349.
The suitable base addition chain which is <10 is 1—-2—3—5—10. Thus, a;=1, a,=2, a;=3, a,=5, and as=10. The
last number in the base addition chain is 10 and the corresponding index value (m) is 5. The number as=10 is
found in e;, is e,=10 and the corresponding index | is 4. Find d=e;—as=0. Since d=0, compute ag=10x2=20. Now
es=21. Find d=es—ag=1. Since, d=1 and ag or ag+1# e, d=1 is not considered at this stage. Compute a;=agx2=40.
Now eg=43. Find d=eg—a;=3. Since 3 is found in the base addition chain ag=a;+3=43. Compute ag=agx2=86.
Now e;=87 and d=e;,—ag=1. Since, d=1 and ag +1 or ag# €. Compute a;,=86x2=172. Now, eg=174 and d=eg—
a;p=2. Since d=2 and ajo+2 #e. Compute a;;=172x2=344. Now ey=379. The difference d=eq—a;;=5 which is
found in the base addition chain. Thus, a;, is computed as: a;,=344+5=349. Since a;;=e,=€=349(the given
exponent) the  process is  stopped.  The  shortest addition chain  for 349 is:
1-2—3—5—10—-20—40—43—86—172—344—349 and 1(349)=11. For other exponents the addition chains
are generated in this manner.

IV. RESULTS AND DISCUSSION

Table 1 shows the comparison of addition chains generated by the DBM and the addition chains illustrated
in the literature [5-9]. Tables 2 and 3 show that the length of addition chains generated by the proposed method
for field exponentiation computations are almost same with additions chains generated by GA[10] and EP [11]
respectively for small exponent. But, for large exponents, the proposed method generates addition chain with
thin increase (at most three) in length when compared with GA and EP. Though there is a thin increase in length
for some large exponent, these exponents are hard to optimize.

Table 4 shows the length of the optimal addition chains (beyond that reducing the length of the addition
chain for the exponents is not possible) given in the literature [3]. Table 5 gives the addition chains generated
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by the proposed DBM. The proposed method also yields the same length of the addition chains as illustrated in

Table 4.
Table 1: Shortest Addition Chains for some Exponents
Proposed by Several Authors Proposed Division Based Method
exchEnent Addition Chain Lerllgth Proposed by-Algorithm Name Addition Chain Ler;gth
39 1-2-3-4-7-11-18-25-32-39 g | Febien etal Euclidean Addition 1-2-3-6-9-18-36-39 7
Chains

95 1-2-4-5-7-14-21-42-84-91-95 10 | Brun’s-Genetic Algorithm 1-2-3-5-10-20-23-46-92-95 9

197 1-2-3-4-5-6-12-24-48-49-98-196-197 12 | QinJiushao-Genetic Algorithm- 1-2-3-6-12-24-48-49-98-196-199 10

221 1-2-3-4-5-6-7-12-24-48-55-110-220-221 13 | QinJiushao-Blocking algorithm 1-2-3-6-12-24-27-54-108-110-220-221 | 11

255 1-2-4-8-16-17-34-68-85-170-255 10 | DongFiguoctal FastFourier 1-2-3-5-10-15-30-60-120-240-255 10

Transform
343 1-2-4-6-8-15-17-30-47-94-109-117-234-347 13 | Brun’s-Genetic Algorithm 1-2-3-5-10-20-40-80-85-170-340-343 | 11
349 1-2-4-8-9-17-34-68-136-272-340-345 11 | Cotin D-Walter-Exponentiation 1-2-3-5-10-20-40-63-86-172-344-349 | 11
using division chain
5 7_3-6-T-12-24-47-55- _ 799 445 Nobormu KUNIHRO et al-nin 1-2-3-4-6-12-24-27-54-108-111-

445 1-2-3-6-7-12-24-42-55-110-111-222-444-445 13 length method 3341444t 13
5953 | 12-4-8-16-32-64-128-256-512-1024-1025-2048- | | | DongFiguo etal. Fast Fourier 1-2-3-5-10-20-22-44-88-176-352-704- | .
=2 2050-4096-4097-8192-16384-20481-22531 Transform 1408-2816-5632-11264-22528-22531

1-2-4-8-16-32-64-128-256-257-514-1028 ‘ . 1-2-3-5-7-14-28-56-59-118-236
30578 2056-4112-4368-4369-8736-8738-17472 20 Ir’r‘::lﬁg;; etal. Fast Fourier -472-477-954-1908-1911-3822 20
-21840-30578 -7644-15288-30576-30578
- - 1-2-3-5-10-15-30-60-70-140-143-286-
1-2-3-4-5-7-8-14-15-16-30-31-32-64-128 . h
TS064310 | -143-286-572-1144-228845764581-9162- 39 | NobornKUNIHRO etal-hybrd | | 372-1144-2288-2290-4380-9160-9163-
- method 18326-36652-73304-146608-293216-
9163-18326-36652-73304-146608-293216- 293719.5 B
a - it a 293219-586438-1172876-1172879- 35
586432-1172864-2345728-2345759-4691518- 134375846515 16-4691519-5383035-
9383036-18766072-18766077-37532154-37532155- - o in w I
75064310 18766076-37532152-37532155-
: 75064310
Table 2 : Comparison of Addition Chain Generated by GA in[10] with Proposed DM for some Hard Exponents
e Addition Chamn Proposed m[10] GA Proposed Division based Addition Chan DM
6271 1-2-3-6-12-24-48-96-192-384 -768 17 1-2-3-6-12-24-48.96-192-195-390 17
1536 -3072 - 6144-6240 - 6264 - 6270 - 6271 -780-783-1566-3132-3135-6270-6271
1231 1-2-3-6-12-24-25-50-100 -200 - 400 - 800 15 1-2-3-5-10-20-40-43-86-172-175-350-700 19
- ~1600 - 3200 - 6400 - 9600 - 11200 - 11225 - 11231 -1400-1403-2806-5612-5615-11230-11231
18287 1-2-3-6-9-15-30-45-47 04188180 19 1-2-3-5-8-16-32-64-69-138-276-284-568-1136 21
“ 380 -760 - 1520 -3040 - 6080 - 12160 - 18240 - 18287 1141-2282-22854570-9140-9143-18286-18287 -
34303 1-2-3-6-12-14-28-56-112-224-448.504-1008 20 1-2-3-5.8-16-32-64-128-133-266-532-535-1070 20
2016 -4032 - 8064 - 16128 - 32236 - 34272 - 34300 - 34303 - -2140-4280-8370-8575-17150-34300-34303 -
65131 1-2-3-6-12-24-48-72-144-288 - 576 - 1152 - 2304 - 4608 2 1-2-3-5-10-15-30-60-63-126-252-504-507-1014-1017 .
7 -4611-9222 - 18444 - 27666 - 55332 - 55908 - 65130 - 65131 - -2034-4068-8136-8141-16282-32564-65128-63131 =
110501 | 1-1-2-4-5-10-20-40-80-160-320-640-1280-2560-2570 | o 1-2:3-5-10-13-26-52-104-208-213-426431-862-1724-1727 |
774 | Z5140-7710-12850-25700-51400-102800-110510 - 110590- 110581 | =~ -3434-6008-6911-13822-27644-27647-55294-110388-110591 | ~
196501 | 1-2-3-6-12-15-30-60-120-240-480-720- 1440 - 2880 -5760 - | . 1-2-3-5-10-20-23-46-92-95-100-380-383-766-1532-1535-3070- | -
7 11520-23040 -46080-52160-184320 -10584 196360 - 196390- 196501 | = 6140-6143-12286-24572-4914440147 98204-106588-196591 | =7
1-2-3-4-8-16-32-64-128-256-257-514-
357887 771-11542-3084 - 6168 - 12336 - 24672 - 40344 - 49347 24 26
98691 - 148038 - 206076-345423 - 357759 - 357887
1-2-4-6-7-14-21-42_84_168 -336-504 -840 ~7-10-20-40-80-160-167-334-668-1336
685951 1680 -3360 - 6720 - 13440 - 26880 - 53760 - 57120 - 114240 25 25 9-5358-10716-21432-42864-42871 26
-228480- 342720 - 685440 - 685944 - 685951 2-141484-342968-342975-683950-68591
1-2-4-5-10-15-19-38-76-152-304-608 -612-1224 - 1-2-3-5-8-16-32-35-70-140-280-285-570-1140-1148-2296
1176431 2448 _4806 -0702 - 105 34 2037 5 58752 - 11?504 -135008 27 4502.4505-0100-18380-36760-36763-73526-147052 20
-204104-588208-588210-1176420-1176428-1176431
7-134-268-526-539-1078-2156-2159
2211837 28 8.34556.34550-60118-138236.138230 | 30
276478-552956-552959-1105918-2211836-2211837
1-2-3-6-12-24-48-06-102-384_768 - 1536 - 2304- 4608 - 9216 - 1-2-3-5-7-14-28-3162-124-12 508-1016-2032-2035
4160527 | 18432 - 36864 - 73728 - 147456 - 204912 - 589824 - 580825-1179650 - | 29 4070-8140-8143-16286-32572-32574-65148-130296-260592- | 31
1769475-3338950-4128775 -4165639-414167943 - 4169479 - 4169527 260595-521190-1042380-2084760-4169920-4169527
7672, T 37
7624319 1-2-3-6-12-18-36-72 134 288 576-1152-1224-2448 - 193.5.7-14.28.56.112-224.231 462 465.930-1860.3 T20.7440.
48060707 - 10524 - 30168 - 78336 - 156672 - 313344- 626688 - 10 1 4500.29780.59560.1 101201 19127238254.038250 | 31
1253376 - 1254600 - 1274184 1274185 - 2548370- 5006740 - 176318.993036.1 006072 19060793812 156. 76243 163624310
6370925 - 7624301 - 7624319 R - e e
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Table 3 : Comparnison of Addition Chains Generated by GA and EP in[11] with Proposed DM for some Hard Exponents

g Addition Chain Proposed in[11] GA | PE Proposed Division based Addition Chain DM
1-2-3-5-10-20-40-80-83-166-206-412-824-1648-3296-6592- 1-2-3-6-12-24-48-49-98-196-392-395-790-1580-3160-3166-6332-
3243679 | 0888-10776-30552-70104-158208-316416-632832-632015-| 27 | 27 12664-12670-25340-50680-101360-202720-405440-810880- 29
1265830-2531660-3164575-3243679 1621760-3243520-3243618-3243667-3243670
1-2-3-4-8-16-32-64-128-256-512-515-1030-2060-4120-8240- 1-2-3-6-12-24-48-51-53-106-212-424-848-1696-1704-3408-6816-
3493799 16480-32960-65920-131840-263680-263683--527366- | 27 | 27 6%21-13642 1364727204 54588 100176100181 218362436724 30
1054732-2109464-3164196-3427879-34937990 873448-1746896-1746890-3403798-3403790
1-2-4-5-10-20-25-35-70-140-280-560-1120-2240-4480-8060- 1-2-3-5-10-20-50-100-200-210-420-422-844-1688-3376-6732-6 75 7-
3439835 | 17920-35840-71680-71705-143410-286820-5736401147280-| 27 | 27 13514-27028-54056-108112-108117-216234-432468-432478- | 29
1147305-2204610-3441015-3450835 264056-1720012-1729017-3450834-3450835
i 1.2.3.6-12-24.27-54-108-162-324-648-1296.1044 3888 1-2.3.6-12-2448.96.08.106.197-304_788-1576-1579-3158-6316-
3235007 | 7776-15552-31104-62208-124416-248832-248850407601-| 27 | 27 12632-25264-25270-25273-50546-101092-202184-404368-808736- | 30
095382-1990764-2086146-3233003-3235007 208748-1617496-3234992-3235004-3235007
i 1-2-3-4-8-16-32-64-128-131-262-324-1048-2096-4192-8384- 1-2-3-56-12-24.48.96-192-197-394-788-1576-3132-6304-6309-
32303591 16768-33536-67072-134144-268288-536576-538672- 27 | 27 12618-25236-50472-100044-201888-403716-807432-1614864- | 29
538803-1077606-2155212-2694015-3230591 1615258-1615282-1615204-3230588-3230591
1-2-3-6-0-18-36-72-144-288-576-1152-1728-2880-5760- 1-2-3.6-12-2448.96-192-194.388-776-1552-3104-3107-6214-
3182555 | 11520-2304046080-92160-184320-187200-187209-374418-| 27 | 27 12428-24856-49712-09424-99427-198454-198008-397816-765632- | 29
748836-1497672-2095344.3182553.3182555 1591638-1501276-3182552-3182555
1-2-4-8-16-32-48-06-192-193-386772-773-1546-3092-6184- 1-2-3-5-6-12-24-48-96-192-204-209-418-836-839-1678-3356 -6 712~
3440623 | 12368-24736-49472-50245-99717-199434_308868-797736- | 27 | 27 13424-26848-53696-107392-214784-420568-859136-1718272- | 30
1595472-3100944-3300378-3440623 3436544-3430000-3440318-3440527-3440623
1-2-4-5-0-18-36-72-144-288-576-1152-23044608-9216- 1-2-3-5-6-12-24-29-38-116-119-238-476-479-058-1916-3832-7664-
3026651 | 18432-18437-36869-73738-02175-184350-368700-737400-| 27 | 27 766915338 30676-61352-122704.245408 245414 400828 400831 | 30
811138-1548538-3097076-3908214-3926651 981662-1963324-3926648-3926631
1-2-3-6-12-24-48-06-192-104-388-776-1552-3104-3107- 1-2-3-5-10-12-2448.96-192-197-304-788-1576-1579-3158-6316-
3234263 | 3155-6310-12620-23240-50480-100960-201020-403840- | 27 | 27 12632-25264-25267-50534-101068-202136-202141-404282- 28
207680-16153603230720-3233875-3234263 208564-1617128-1617131-3234263
crns | 12-4-8-16-17-34-68-136-272-544-1088-2176-4352-8704- 1-2-3-6-12-24-48-06-192-384-768-816-1632-3264-6528-13056-
333192 1740834816-69632-139264-278528-557056-1114112- 27 | 27 26112-52224-10448208896-417792-835584-1671168-3342336- | 29
1114656-1114724-1114741-2220482-3344223-3352027 3348864-3352812-3352806-3352920-3352026-3352027

The proposed method may gain some attention because it is deterministic whereas the other two approaches
GA and EP are evolutionary algorithms. Further, to determine the optimum addition chain for the given
exponent using evolutionary algorithms, the code is run for several times, preferably 30 independent times and
the optimal addition chain for an exponent is obtained out of 30 independent runs.

The reason behind the proposed approach generates the optimal addition chain for the given exponent is that
each time the exponent is reduced to half and the process is repeated until the exponent is reduced to one. To
form the addition chain, the process starts with base addition chain to get the next number of the addition chain,
and the last number in the base addition chain is multiplied by 2. The number obtained in this way is compared
with numbers involved in the addition with the quotients obtained from the exponents when it is divided by two.
If the difference between the two numbers is less than 10 and if it is found in the base addition chain, the
difference is added to the number last generated in the base addition chain so that the vast difference between
the two numbers could be avoided. Since, this checking process is performed at each stage; ultimately it

produces the optimal addition chain.

Table 4 shows the length of optimal addition chain for some exponents up to 512 shown in [3]

length Solutions
1 {2}
2 {3.4}
3 {5,6,8}
4 {7,9,10, 12,16,}
5 {11, 13, 14, 15, 17, 18, 20, 24, 32}
6 {19, 21, 22, 23, 25, 26, 27,28,30,33,34,36,40,48,64}
7 {29, 31, 35, 37, 38, 39, 41, 42, 43, 44,45,46,49,50,51,52,

54,56,60,65,66,68,72,80,96,128}

{47,53,55,57,58,59,61,62,63,67, 69,70,73,74,75,76,77,78,81,82,
8 83,84,85,86,88,90,92,97,98, 99,100,102,104,108,112,120,129,
130,132,136,144,160,192,256}

{71,79,87,89,91,93,94,95, 101,103,105,106,107,109,110,111,113,114,
115,116,117,118,119,121,122,123,124,125, 126,131,133,134,135,137,
9 138,140,145,146,147,148,149,150,152,153,154,156,161,162,163,164,
165,166,168,170,172,176,180,184,193,194,195,196,198,200,204,208,
216,224,240,257,258,260,264,272,288,320,384,512}
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Table 5: Generation of addition chain based on proposed DBM for small exponents

Exponent . i Length Exponent . . Length
© Addition Chain i) © Addition Chain i)
2 1-2 1 37 1-2-3-6-9-18-36-37 7
3 1-2-3 2 38 1-2-3-6-9-18-19-38 7
4 1-2-4 2 39 1-2-3-6-9-18-36-39 7
5 1-2-3-5 3 41 1-2-3-5-10-20-40-41 7
6 1-2-3-6 3 42 1-2-3-5-10-20-21-42 7
8 1-2-4-8 3 43 1-2-3-5-10-20-40-43 7
7 1-2-3-5-7 4 44 1-2-3-5-10-11-22-44 7
9 1-2-3-6-9 4 45 1-2-3-5-10-20-40-45 7
10 1-2-3-5-10 4 46 1-2-3-5-10-20-23-46 7
12 1-2-3-6-12 4 49 1-2-3-6-12-24-48-49 7
16 1-2-4-8-16 4 50 1-2-3-6-12-24-25-50 7
11 1-2-3-5-10-11 5 51 1-2-3-6-12-24-48-51 7
13 1-2-3-6-12-13 5 52 1-2-3-6-12-13-26-52 7
14 1-2-3-5-7-14 5 54 1-2-3-6-12-24-48-54 7
15 1-2-3-5-10-15 5 56 1-2-3-5-7-14-28-56 7
17 1-2-4-8-16-17 5 60 1-2-3-5-10-15-30-60 7
18 1-2-3-6-9-18 5 65 1-2-4-8-16-32-64-65 7
20 1-2-3-5-10-20 5 66 1-2-4-8-16-32-33-66 7
24 1-2-3-6-12-24 5 68 1-2-4-8-16-17-34-68 7
32 1-2-4-8-16-32 5 72 1-2-3-6-9-18-36-72 7
19 1-2-3-6-9-18-19 6 80 1-2-3-5-10-20-40-80 7
21 1-2-3-5-10-20-21 6 96 1-2-3-6-12-24-48-96 7
22 1-2-3-5-10-11-22 6 128 1-2-4-8-16-32-64-128 7
23 1-2-3-5-10-20-23 6 47 1-2-3-5-10-20-40-45-47 8
25 1-2-3-6-12-24-25 6 53 1-2-3-5-12-13-26-52-53 8
26 1-2-3-6-12-13-26 6 55 1-2-3-6-12-24-48-54-55 8
27 1-2-3-6-12-24-27 6 57 1-2-3-5-7-14-28-56-57 8
28 1-2-3-5-7-14-28 6 58 1-2-3-5-7-14-28-29-58 8
30 1-2-3-5-10-15-30 6 59 1-2-3-5-7-14-28-56-59 8
33 1-2-4-8-16-32-33 6 61 1-2-3-5-10-15-30-60-61 8
34 1-2-4-8-16-17-34 6 62 1-2-3-5-10-15-30-31-62 8
36 1-2-3-6-9-18-36 6 63 1-2-3-5-10-15-30-60-63 8
40 1-2-3-5-10-20-40 6 67 1-2-4-8-16-32-33-66-67 8
48 1-2-3-6-12-24-48 6 69 1-2-4-8-16-17-34-68-69 8
64 1-2-4-8-16-32-64 6 70 1-2-4-8-16-17-34-35-70 8
29 1-2-3-5-7-14-28-29 7 73 1-2-3-6-9-18-36-72-73 8
31 1-2-3-5-10-15-30-31 7 74 1-2-3-6-9-18-36-37-74 8
35 1-2-4-8-16-17-34-35 7 75 1-2-3-6-9-18-36-72-75 8
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V. CONCLUSION

The proposed division based addition chain generates the optimal addition chains for the small exponents
which are exactly matched with addition chains generated by the latest methods. But, for some large exponents,
there is very small increase in chains length (at most three). This result in turn reduces the encryption/decryption
time due to the fact that most of the public-key algorithms exponentiation operation plays a key role in
encryption/decryption process where the number of multiplications involved in the given exponent is equal to
the length of the addition chain. Also, the proposed method is simple, deterministic and is based on simply the
division.
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