
An Approach to Improve the Performance
of Insertion Sort Algorithm

Partha Sarathi Dutta
Department of Computer Application,

 Gyan Jyoti College, University of North Bengal
Dagapur, Near Pintail Village, Siliguri, West Bengal, India

E-mail: dpartha.sjc@gmail.com

Abstract— Sorting is a fundamental operation in computer science. Sorting means rearranging data in
some order, such as ascending, descending with numerical data or alphabetically with character data.
There are many sorting algorithm that have been proposed to meet the particular application, among
which is insertion sort. It is known that insertion sort runs faster when the list is ‘nearly’ sorted but it
runs slow when the list is in reverse order. This paper shows a way to improve the performance of
insertion sort technique by implementing the algorithm using a new approach of implementation. This
new approach has compared with the original version of insertion sort algorithm and bubble sort and
showed that the proposed approach performed better in the worst case scenario.

Keywords- sorting; insertion sort; algorithm; new approach; bubble

I. INTRODUCTION

The sorting algorithm is used to rearrange the items of a given list in some order. Though dozens of sorting
algorithm have been developed, no single sorting technique is best suited for all applications. Great research
went into this category of algorithm because of its importance. These types of algorithm are very much used in
many computer algorithms for example searching an element, database algorithm and many more. Sorting
algorithm can be classified into two categories: internal sorting and external sorting. In internal sorting all items
to be sorted are kept in the main memory. External sorting, on the other hand, deals with a large number of
items, hence have to be reside in auxiliary storage device such as tape or disk.
This paper presents a new idea to improve the performance of insertion sort algorithm by reducing the number
of comparison in worst case scenario.
The paper is organized as follows: Section II describes the insertion sort algorithm. Section III describes the
analysis of insertion sort algorithm. Proposed algorithm is described with Example and pseudocode in section
IV. Section V and Section VI describes the performance analysis and comparison of proposed algorithm
respectively. Conclusion is described in section VII and finally used references has described.

II. STRAIGHT INSERTION SORT

The insertion sort algorithm works as follows: Consider an array A[0..n-1] with n- elements. This algorithm
scans A from A[0] to A[n-1], inserting each element A[k] into its proper position in the previously sorted
subarray A[0], A[1], ……….A[k-1]. This can be accomplished by comparing A[k] with A[k-1], A[k] with A[k-
2] and so on, until we found an element A[j] such that A[j]<=A[k]. Then each of the elements A[k-1],A[k-
2]…..A[j+1] is moved forward one location , and A[k] is the inserted in the j+1st position in the array.
Here is a pseudocode of this algorithm:
Algorithm InsertionSort(A[0..n-1)
// Input: An array A[0..n-1] with n- elements
//output: An array A[0..n-1] sorted in ascending order
for(i=1;i<=n-1;i++)
{
 t=A[i];
 j=i-1;
While(j >= 0 && t < A[j])
 {
 A[j+1] = A[j]; //Move element forward
 j=j-1;
 }
A[j+1] = t ; // Insert element in proper place
}

Fig 1. Pseudocode of insertion sort

Partha Sarathi Dutta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 503

III. ANALYSIS OF STRAIGHT INSERTION SORT

A. Number of comparisions

The basic operation of this algorithm is the key comparison. In this algorithm, the number of key comparisons
depends on the nature of the input. The worst case occurs, when input of an array are of reverse order. The
number of key comparisons for such an input is

 n-1 i-1

C(n) = ∑ ∑ 1

 i=1 j=0

 n-1

 = ∑ (i - 1) - 0 + 1

 i=1

 n-1

 = ∑ i

 i=1

 = 1 + 2 + 3 + ……..+ (n-1)

 = n(n-1) / 2 = O(n2)

B. Number of movements

The number of key movement is , M(n) = 1 + 2 + 3 + ……+ (n-1) = n(n-1) / 2 . Since, the number of keys
that needs to be moved in i-th iteration is i.

C. Number of swaps

The total number of swaps when the array are of reverse order, S(n) = 0

IV. THE PROPOSED ALGORITHM

A. Working of proposed algorithm

The proposed algorithm to sort the list of elements in an array A[0..n-1] works as follows:-

Step 1:- Start with the first element A[0] and compare it with the last element A[n-1]. If A[0] > A[n-1], then
swap A[0] and A[n-1] . Next compare A[1] with A[n-2] and swap if A[1] > A[n-2]. This process is repeated
until the last two consecutive middle elements are compared or until only one element remains in the middle.

Step 2:- Now, insertion sort algorithm is applied to sort the elements in the array A.

B. Example

Consider the following list of elements in the reverse order (worst case scenario)

 55 44 33 22 11

Step 1:- (a) 55 44 33 22 11 [Compare 55 with 11. Since 55 > 11 so, swap]

 (b) 11 44 33 22 55 [Compare 44 with 22. Since 44 > 22 so, swap]

 (c) 11 22 33 44 55 [only one element in the middle, go to step 2]

Step 2:- (a) 11 22 33 44 55

 (b) 11 22 33 44 55

 (c) 11 22 33 44 55

 (d) 11 22 33 44 55

 (e) 11 22 33 44 55

 (f) 11 22 33 44 55

Fig 2. Illustration of proposed algorithm. The elements being inserted is in bold.

C. Pseudocode of proposed algorithm

Algorithm ProposedSort(A[0..n-1])

// Input- an array A[0..n-1] with n-elements

//Output- an array A[0..n-1] , sorted in ascending order.

beg=0,end=n-1; //initialize lower and upper bound of A

while(beg < end)

 {

 if(A[beg] > A[end])

 swap(A[beg], A[end])

Partha Sarathi Dutta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 504

 beg =beg + 1; //update lower and upper bound of A

 end =end - 1 ;

}//end of while loop

Call InsertionSort(A[0..n-1]) // call insertion sort algorithm (given in fig(1)) to sort the elements.

Fig 3. Proposed algorithm

V. PERFORMANCE ANALYSIS OF PROPOSED ALGORITHM

Generally, the time for a sorting algorithm is determined in terms of the number of comparisons. In this paper,
the number of comparisons of the proposed algorithm has measured when the elements are in the reverse order.
Total number of data movement and swap operations taken by the proposed algorithm has also been measured.

A. Number of comparisons

In step 1 of the algorithm, the number of comparisons is |_n/2_|. In step2 of the algorithm, the number of
comparisons in each iteration is 1. The total number of iteration is n-1, so the number of comparisons is = n-1,
where n is the input size of the array A.

Therefore, total number of comparison to sort array A of size n by the proposed algorithm is

 C(n) = |_n/2 _| + (n-1)

 = |_(3n-2) / 2_|

 = O(n)

B. Number of movements

There is no data movement when the elements are in the reverse order. So, M(n) = 0

C. Number of swaps

The total number of swap, when the elements are in the reverse order is , S(n) = |_n / 2_|

VI. COMPARISONS OF PROPOSED ALGORITHM WITH EXISTING ALGORITHM

The following table shows the performance of the proposed algorithm by comparing with the existing
algorithm (Insertion and Bubble) when the elements are in the reverse order.

TABLE I. COMPARISONS OF PROPOSED ALGORITHM WITH EXISTING SORT

Size of Input
Insertion Sort Bubble Sort

Proposed
Algorithm

Number of
Comparisons

Number of
Comparisons

Number of
Comparisons

5 10 10 6

32 496 496 47

64 2016 2016 95

128 8128 8128 191

256 32640 32640 383

512 130816 130816 767

VII. CONCLUSION

 Table I shows that the proposed algorithm gives better performance in terms of number of comparisons. The
result also shows that, the proposed algorithm is more efficient then both insertion sort and bubble sort for large
values of input. Finally, the author has reached the conclusion that the proposed algorithm can be used for large
number of input to get the better result.

REFERENCES
[1] Levitin A., “Introduction to the Design and Analysis of Algorithms,” 2nd ed, Pearson Education, 2007.

[2] Knuth D.,”The Art of Computer Programming Sorting and Searching,” 2nd ed., vol. 3, Addision Wesley, 1998.

[3] Wang Min, “Analysis on 2-Element Insertion Sort Algorithm,” International Conference on Computer Design and Applications
(ICCDA), 2010.

[4] Oyelami Olufemi Moses, “Improving the Performance of Bubble Sort Using a Modified Diminishing Increment Sorting,” Scientific
Research and Essay Vol.4 (8), pp. 740 -744 (2009).

[5] Vandana Sharma, Satwinder Singh and Dr.K.S.Kahlon, “Performance Study of Improved Heap Sort Algorithm and Other Sorting
Algorithm on Different Platforms,” IJCSNS International Journal of Computer Science and Network Security, Vol.8 No.4 (2008)

[6] Rupesh Srivastava, Tarun Tiwari, and Sweetes Sing, “Bidirectional Expansion—Insertion Algorithm for Sorting,” Second
International Conference on Emerging Trends in Engineering and Technology, ICETET-09. (2009).

Partha Sarathi Dutta / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 05 May 2013 505

	An Approach to Improve the Performanceof Insertion Sort Algorithm
	Abstract
	Keywords
	I. INTRODUCTION
	II. STRAIGHT INSERTION SORT
	III. ANALYSIS OF STRAIGHT INSERTION SORT
	IV. THE PROPOSED ALGORITHM
	V. PERFORMANCE ANALYSIS OF PROPOSED ALGORITHM
	VI. COMPARISONS OF PROPOSED ALGORITHM WITH EXISTING ALGORITHM
	VII. CONCLUSION
	REFERENCES

