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Abstract: 

This paper compares five spatial interpolation methods of Kriging-exponential, Krigingspherical,Kriging-
Gaussian with different weighting values are unity and 1/Standard Deviation in temperature 
interpolation,utilizing GIS software spatial analysis functions. The research data are the minimum temperature, 
mean air temperatures and maximum temperature of the first ten days of January, April, July and October from 
1990 to 2005 in 14 weather stations of Alaska. The result shows that Kriging-doublespherical,Matern and 
Gaussian interpolation methods  are the highest-accuracy methods for unity weightage, Matern and Gaussian 
interpolation methods are highest-accuracy methods for 1/Standard Deviation weightage and Matern with unity 
and 1/variance weightage is best suitable interpolation methods for the spatial data 
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I. INTRODUCTION 

Interpolation is a method of getting new data from some known data points. Researchers have adopted lots of 
spatial interpolation methods in practical studies, such as of Kriging-exponential, Kriging spherical, Kriging-
Gaussian. 

Air temperature is a vital meteorological element, which is often used in engineering and science work. In 
Alaska, many weather data is from official departments and there are not many weather sites, some weather data 
is difficult to obtain in some areas, so people use interpolation methods to get some air temperature data [1-11]. 
Though in slim number studies, people compared some interpolation methods [7-11], there are rarely study on 
comparison of different interpolation methods when interpolating temperature in Alaska. 

II.INTERPOLATION METHODS AND DATA PROCESS 

Interpolation Methods 

Kriging 

Kringing was developed by a French mathematician Georges Matheron, and it’s described as follows, 

         (1) 

In ordinary Kriging, the weight I λdepends on a fitted model to the measured points, the spatial relationships 
among the measured values around the predicted  location, and the distance to the predicted location [12]. These 
characters can be obtained from variogram. Kriging adopts “semi-variogram function” to describe the spatial 
structure of variable, which is shown in the following formula: 

           (2) 

where N(h) is the number of points pair, Z is the interpolated variable, h is distance between two interpolated 
points, xi is the starting location, and xi + h is the ending location [13-16]. The graph will show the calculated 
variogram. The dots are the calculated value, and the blue line is the current estimate of the model.  The colour 
represents the number of pairs for variance estimate at each lag. The colour ranges from pink (smallest no. pairs) 
to blue (highest no. pairs) as indicated by the legend on the bottom right hand-side. 
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The ordinary Kriging module includes four semivariogram models; this paper only focuses on three of them, 
including Exponential Model, Spherical Model and Gaussian Model. 

Exponential Model (EM): 

      (3) 

Spherical Model (SM): 

     (4) 

Gaussian Model (GM): 

    (5) 

c0 , c above are unknown parameters that should be determined by least squares.` 

Local/Global variogram  

Global variogram refers to calculating a variogram for the whole area. And kriging uses this whole area 
variogram for prediction. Local variogram is intended for field with high data density, where “local” variogram 
was calculated for each interpolation point. 

SPHERICAL  

if (h < A1) then  

rho = 1- 1.5 h/A1 + 0.5 * (h/A1)
3

 

else  

rho = 0  

endif  

gamma = C0 + C1 * (1- rho)  

EXPONENTIAL  

rho = exp(-h/A1)  

gamma = C0+ C1 * (1 - rho)  

GAUSSIAN  

rho = exp(-(h/A1)
2

)  

gamma = C0+ C1 * (1 - rho)  

LINEAR WITH SILL  

if(h < A1) then  

rho = 1- (h/A1)  

else  

rho = 0  

end if  

gamma = C0+ C1 * (1 – rho)  

STABLE  

rho = exp[-(h/A1) 
alfa

]  

gamma = C0+ C1 * (1 – rho)  

(0<alfa<2)  

GENERALISED CAUCHY  

rho = (1 + (h/A1)
2

)
-alfa

 

gamma = C0+ C1 * (1 – rho)  
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(alfa>0)  

MATERN  

rho = 1/[2 
(SMOOTH-1) 

* Γ(SMOOTH)] * (h/A1) 
SMOOTH 

* Bess
SMOOTH

(h/A1)  

gamma= C0 + C1*(1 –rho)  

where  

Γ (…) is Gamma function,  

Bess
SMOOTH

(…) is the modified Bessel function of the third kind of order smooth.  

(0<SMOOTH<2)  

Matern is a general model that is flexible and can be used to approximate function behaving as exponential 
(smooth = 0.5), power, or Whittle (Bessel function) model (smooth = 1).  

DOUBLE_SPHERICAL  

if (h < A2) then  

rho1 = 1-1.5*h/A1+0.5*(h/A1)
3 

 

rho2 = 1-1.5*h/A2+0.5*(h/A2)
3 

 

if (h > A1) then  

rho1=0  

end if  

else  

rho1 = 0  

rho2 = 0  

end if  

gamma = C0+C1*(1-rho1)+C2*(1-rho2)  

DOUBLE_EXPONENTIAL  

rho1 = exp(-h/A1)  

rho2 = exp(-h/A2)  

gamma = C0+C1*(1-rho1)+C2*(1-rho2)  

For local variogram, most crop yield data can be fitted with spherical and exponential model. The recommended 
model for local variogram is the exponential model, Gaussian model is not recommended as it can produce 
unstable kriging equation. 

Weight for Fitting Variogram  

Variogram model is fitted to the data by using weighted nonlinear least-squares method (Jian et al., 1996), 
minimising:  

(6) 

User can specify the type of weighting for w: Unity (no weighting) No. of pairs, no. of pairs calculated from 
semivariance N(h) 1/std.dev, the standard deviation of the average of semivariance for particular lag.  

No_pairs/std_dev, combination of no. of pairs & std. deviation of the semivarainace estimate. 

The goodness of fit can be assessed by the SSE (sum of squared error) or AIC (Akaike Information Critereon). 
The lowest AIC pertains to the best model (Webster and McBratney, 1989).  

AIC is defined as:  

AIC = -2 ln(maximum likelihood) + 2 (number of parameters), and is estimated by:  

AIC = n ln (R) + 2 p where R is the sum of squares of residuals, and p is the number of parameters. 

Data sets 

The research data is provided by Alaska Meteorological Administration, including the Temperature from 
January to June (T_F_JAN), Temperature from July to December(T_F_JULY) and Mean_Temperature in 14 
meteorological stations of Alaska, and longitude, latitude and altitude of the Weather sites. The sites involved 
are located in east  longitude 75.98°E to 131.98°E degrees, north latitude 18.23°N to 53.47°N.  
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Data Process 

Step1: The raw data is text format, so those text-format data of 14 weather station (latitude, longitude, altitude, 
and temperature values) are changed into shp format in ArcView.  

Step 2: The temperature is always affected by the elevation, and many researchers interpolated the temperature 
combing with DEM data. In order to guarantee all sites are on the same level, the elevation effect is removed on 
all interpolation sites before interpolation, and the method is described as follows, 

    (7) 

where Ta is the temperature value after removing the elevation effect, Tb is the temperature value before 
removing the elevation effect, E is elevation value. 

Step 3: Interpolation methods for the given dataset are carried out by VSEPER software and corresponding 
graphs are generated. 

Step 4: Integrating with the elevation information, the elevation effect is finally considered on the temperature 
data obtained from step 4, so the final interpolation results of all interpolation sites are got. The process is 
described as follows, 

   (8) 

where Tf is the final interpolation temperature value of points, Ta is the value got in formula (11), E is elevation 
value. 

III RESULTS AND ANALYSIS 

Mean Absolute Error (MAE) and Root Mean Squared Interpolation Error (RMSIE) are chosen as the two 
indicators that evaluate the precision of the interpolation methods, the result is shown as follows (the values are 
in Celsius), Figure 1(a-l) shows the results of Exponential, Gaussian, Spherical, Double Exponential and Double 
Spherical interpolation methods with Unity and 1 / standard deviation as the weightage values for the given 
Alaska climate dataset respectively. The x axis to graphs represents the temperature and y axis of the graphs 
represents the number of days for the each slot like January to June, July to December. The data represented in 
the graphs is the mean temperature of the particular day 

       

(a)    (b)     (c) 
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  (d)      (e)      (f)  

  

  (g)    (h)      (i) 

 

 (j)     (k)    (l) 

Figure 1.(a – l) Spherical, Double Exponential and Double Spherical interpolation methods with Unity and 1 / standard deviation as the 
weightage values for the given Alaska climate dataset 
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Table 1 Analysis of Spatial Interpolation Methods 

Model Weighting Parameters 

 

 Unweighted Weighte
d 

C0 C1 A1 C2/ 

Alpha 

SSE RMSE AIC SSE 

Exponential Unity 0 9891.3 6166.1  138663 76.01 290.2 124.5 

Gaussian Unity 0.2409 829.0 76.72  9967.8 20.38 227.0 18.96 

Spherical Unity 0 9985.2 9328.2  138121 75.86 290.1 124.3 

Double 
Spherical 

Unity 15.27 1.082 10000 2.942 8580.9 46.32 44.23 10.37 

Double 
Exponential 

Unity 0 0.0000100 50000 217.0 42354 42.01 265.7 866.3 

Matern Unity 0.05712 10000 214.9 1.343 10227 20.64 229.6 18.94 

Exponential 1/Varianc
e 

0 9636.0 3723.9  1187969 250.0 271.8 323.6 

Gaussian 1/Varianc
e 

0.3215 10000 253.5  50709 51.66 211.8 25.92 

Spherical 1/Varianc
e 

0 10000 5789.3  1180502 249.3 271.6 322.4 

Double 
Spherical 

1/variance 0 0.0000100 22780 217.0 92941 62.23 284.6 2758.9 

Double 
Exponential 

1/variance 0 0.0000100 50000 217.0 42354 42.01 265.7 866.3 

Matern 1/variance 0.05712 10000 214.9 1.343 10227 20.64 229.6 18.94 

IV CONCLUSION 

To select the optimal method in this paper, six interpolation methods – Exponential method,Gaussian 
method,Spherical method, Double Spherical method,Double Expontential method and Matern method with 
different weighting values Unity and 1/standard deviation -were compared, and then the optimal interpolation 
method was used to give the spatial distribution of temperature dataset. We draw the following conclusions from 
this study: Kriging-doublespherical, Matern and Gaussian interpolation methods  are the highest-accuracy 
methods for unity weightage, Matern and Gaussian interpolation methods are highest-accuracy methods for 
1/Standard Deviation weightage and Matern with unity and 1/variance weightage is best suitable interpolation 
methods for the spatial data 
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