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Abstract - Dimension reduction is defined as the process of mapping high-dimensional data to a lower-
dimensional vector space.  Most machine learning and data mining techniques may not be effective for 
high-dimensional data.  In order to handle this data adequately, its dimensionality needs to be reduced.  
Dimensionality reduction is also needed for visualization, graph embedding, image retrieval and a variety 
of applications. This paper discuss the most popular linear dimensionality reduction method Principal 
Component Analysis and the various non linear dimensionality reduction methods such as 
Multidimensional scaling, Isomap, Locally Linear Embedding, Laplacian Eigen Map, Semidefinite 
embedding, Minimum Volume Embedding and Structure Preserving Embedding .  
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1. INTRODUCTION 

In machine learning, computer vision, computational Biology, pattern recognition, data compression  
and in  real-world data, such as speech signals, digital photographs, and other applied areas, datasets  involves 
high dimensional objects .In order to handle this data adequately, its dimensionality needs to be reduced. 
Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of  
lower dimensionality. Ideally, the reduced representation should have a dimensionality that corresponds to the 
intrinsic dimensionality of the data. The intrinsic dimensionality of data is the minimum number of parameters 
needed to account for the observed properties of the data. Many algorithms for dimensionality reduction have 
been developed to accomplish these tasks. Traditionally, spectral methods such as principal component analysis 
(PCA)  have been applied to many graph embedding and dimensionality reduction tasks. In spectral methods the 
low dimensional representations are derived from the top  or bottom eigenvectors of specially constructed 
matrices. These methods aim to find low-dimensional representations of data that preserve its inherent structure. 
They  assume that  
the underling manifold is a linear subspace. In order to solve the problem of dimensionality reduction in 
nonlinear cases, many recent techniques, including Multidimensional scaling(MDS), locally linear embedding 
(LLE), Laplacian eigenmaps (LEM), Isomap , semidefinite embedding(SDE), Minimum volume 
embedding(MVE) and structure preserving embedding(SPE) have been proposed. These all provide different 
techniques for capturing the non-linearity of the underlying manifold incorporating local distance information in 
different ways. LLE[5], only considers local pairwise information between points. Similarly, Laplacian 
Eigenmaps[1] operates in this local regime. Isomap[12], on the other hand, operates globally on the set of all 
distances between points. It uses local information to construct a k-nearest neighbor graph and estimates 
distances between far away points by considering the shortest path on the graph. 

Graphs are essential for encoding information, and it is widely used to represent the data in many fields 
ranging from computational biology to computer vision. When the input data is a binary adjacency matrix rather 
than high-dimensional data, many of these graph-based dimensionality reduction algorithms can be applied 
directly. Graph embedding algorithms place nodes at points on some surface  and connect points with an arc if 
the nodes have an edge between them. We aim to address the problem of how to organize graphs into a pattern-
space in which similar structures are close to one-another and dissimilar structures 
are far apart. There are a number of ways in which this can be achieved. One approach  is to compute the 
distance between graphs and to use multidimensional scaling (MDS) to embed the individual graphs in a low-
dimensional space. The second approach is to extract feature vectors from the graphs. A pattern-space can be 
constructed from such vectors by performing modal analysis on their covariance matrix. To overcome the 
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problem of how to map the structure of a graph onto a vector of fixed length, we turn to graph-spectral 
decomposition methods[11]. Spectral graph theory is a branch in mathematics which aims to characterize the 
properties of unweighted graphs using the eigenvalues and eigenvectors of the adjacency matrix or the closely 
related Laplacian matrix. While embedding the high dimensional data to low dimensional, the structure of the 
graph topology should not be distorted. To preserve the structure various connectivity algorithms such as k-
Nearest Neighbor algorithm , bmatching or maximum weight spanning tree can be used. 
 The remainder of the paper is structured as follows. Section II deals with the different linear and non 
linear dimensionality reduction techniques. Section III concludes this survey. 

2. DIMENSIONALITY REDUCTION 

The problem of (nonlinear) dimensionality reduction can be defined as follows. Assume we have 
dataset represented  in a n×D matrix X consisting of n datavectors  xi (i є  {1, 2, . . . , n}) with dimensionality D. 
Assume further that this dataset has intrinsic dimensionality d (where d < D ). Here, in mathematical terms, 
intrinsic dimensionality means that the points in dataset X are lying on or near a manifold with dimensionality d 
that is embedded in the D-dimensional space. Dimensionality reduction techniques transform dataset X with 
dimensionality D into a new dataset Y with dimensionality d, while retaining the geometry of the data as much 
as possible. In general, neither the geometry of the data manifold, nor the intrinsic dimensionality d of the 
dataset X are known. Therefore, dimensionality reduction is a  problem that can only be solved by assuming 
certain properties of the data such as its intrinsic dimensionality.  
2.1. Principal Component Analysis (PCA) 

PCA is a linear dimension reduction method . It  is based on the statistical representation of a random 
variable. Given a set of data on n dimensions, PCA aims to find a linear subspace of dimension d lower than n 
such that the data points lie mainly on this linear subspace . It is based on the covariance matrix of the variables. 
Such a reduced subspace attempts to maintain most of the variability of the data. Principal Components Analysis 
(PCA)  constructs a low-dimensional representation of the data that describes as much of the variance in the data 
as possible. This is done by finding a linear basis of reduced dimensionality for the data, in which the amount of 
variance  in the data is maximal. In mathematical terms, PCA attempts to find a linear mapping M that 
maximizes MTcov(X)M, where cov(X) is the covariance matrix of the data X. This linear mapping is formed by 
the d principal eigenvectors (i.e., principal components) of the covariance matrix of  the zero-mean data .Hence, 
PCA solves the eigenproblem cov(X)M = λM . The eigenproblem is solved for the d principal eigenvalues λ. 
The low-dimensional data representations yi of the datapoints xi  are computed by mapping them onto the linear 
basis M  i.e., Y = (X – X’ )M. PCA has been successfully applied in a large number of domains such as face 
recognition , coin classification, and seismic series analysis . The main drawback of PCA is that the size of the 
covariance matrix is proportional to the dimensionality of the datapoints. As a result, the computation of the 
eigenvectors might be infeasible for very high-dimensional data. In datasets in which n < D, this drawback may 
be overcome by computing the eigenvectors of the squared Euclidean distance matrix  (X – X’ )(X – X’ )T 
instead of the eigenvectors of the covariance matrix  . 
2.2. Multidimensional scaling (MDS) 

  Multidimensional scaling (MDS) is used to provide a visual representation of the pattern of 
proximities (i.e., similarities or distances) among a set of objects. Input to MDS is a matrix which defines a 
distance function δi,j which  specifies  the distance between i and j. MDS attempts to find an embedding  from 
the input matrix  into RN such that distances are preserved. Suppose the input is a collection of I objects. The 
goal of MDS is to find I vectors x1,x2,…..,xI  є RN such that  ||xi – xj || ≈ δi,j for all i,j є I. If the dimension N is 
chosen to be 2 or 3, we may plot the vectors xi to obtain a visualization of the similarities between the I objects. 
There are various approaches to determining the vectors xi. Usually, MDS is formulated as an optimization 
problem where x1,x2,…..,xI is found as a minimizer of some cost function, for example, min୶ଵ,,…..,୶I ෍ሺ ||xi –  xj || െ  δ݅, ݆ሻ ଶ௜வ௝  

A solution may then be found by numerical optimization techniques. For some particularly chosen cost 
functions, minimizers can be stated analytically in terms of matrix eigen decomposition. 
2.3.  Isomap 

The drawback of Multidimensional scaling is that, it is based on the Euclidean distance and it doesn’t 
take in to consideration any of the neighboring datapoints. If the high-dimensional data lies on or near a curved 
manifold,  MDS  consider two datapoints as near points, whereas their distance over the manifold is much larger 
than the typical interpoint distance. Isomap is a technique which incorporates the geodesic distances between 
datapoints to the Multidimensional scaling method . Geodesic distance is the distance between two points 
measured over the manifold. Isomap defines the geodesic distance to be the sum of edge weights along the 
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shortest path between two nodes. The top n eigenvectors of the geodesic distance matrix, represent the 
coordinates in the new n-dimensional Euclidean space. 

Isomap involves 3 steps. First  step is to calculate the geodic distance between datapoints by 
constructing  a neighbourhood  graph G by using any of the connectivity algorithms such as k Nearest neighbor.  
Next step is to find the shortest path between two points which gives a good estimate of the geodesic distance 
between two points which can be found out by using Dijkstra’s algorithm.The last step is  the low dimensional 
embedding which can be done by applying multidimensional scaling on the resulting distance metric. An 
important drawback of isomap algorithm is its topological instability. It makes  connection error while 
constructing the neighborhood  graph. Another drawback is that it can fail if the manifold is nonconvex . 
2.4. Local Linear Embedding (LLE) 

Local Linear Embedding (LLE)  is a local technique for dimensionality reduction that is similar to 
Isomap in that it constructs a graph representation of the datapoints. It preserves local properties and hence it is 
less sensitive to the short circuit problem that arise in Isomap. Also, the preservation of local properties allows 
for successful embedding of nonconvex manifolds. LLE  begins by finding a set of the nearest neighbors of each 
point. It then computes a set of weights for each point that best describe the point as a linear combination of  its 
neighbors. Finally, it uses an eigenvector-based optimization technique to find the low-dimensional embedding 
of points. 
 Suppose we have the data set consisting of N vectors X1, X2,…. ,XN each of dimensionality D. 
First step is to compute the neighbors of each data point Xi . Next  Compute the weights Wij that best reconstruct 
each data point from its neighbors. The reconstruction error is measured by the cost function 

E(W) = ∑ |ܺ݅ െ ∑ ܹ݆݆݅ܺ |௝௜ ଶ 
The weights   Wij    summarize the contribution of the ith data point to the jth  reconstruction. To compute the 
weights Wij we minimize the cost function subject to two constraints. First, that each data point is reconstructed 
only from its neighbors, enforcing  Wij = 0 if Xj does not belongs to this set. Second, that the rows of the weight 
matrix sum to one ∑ ܹ݆݅ ൌ 1 ௝ . This minimization function ensures that for any particular data point, they are 
invariant to rotations, rescalings, and translations of that data point and its neighbors. In the final step of the 
algorithm, each high dimensional data Xi is mapped to a low dimensional vector Yi representing global internal 
coordinates on the manifold. This is done by choosing d dimensional coordinates Yi to minimize the embedding 
cost function: 

�(Y) =  ∑ |ܻ݅ െ ∑ ܹ݆ܻ݆݅ |௝௜ ଶ 
It can be minimized by solving a sparse NxN  eigenvector problem, whose bottom non-zero eigenvectors 
provide an ordered set of orthogonal coordinates centered on the origin. 
 Sometimes LLE performs worse than isomap .It fails to provide good visualization of data objects. The 
difficulty arise while dealing with manifolds containing holes. In addition, LLE tends to collapse large portions 
of the data onto a single point in cases where the target dimensionality is too low. 
2.5.  Laplacian eigenmaps 

 Laplacian Eigenmaps  uses spectral techniques to perform dimensionality reduction. This technique 
relies on the basic assumption that the data lies in a low dimensional manifold in a high dimensional space. Like 
LLE it preserves local properties so that it’s not prone to shot circuiting. It is based on the intrinsic geometry 
structure of the manifold so that it exhibit stability in the embedding. The Laplacian Eigenmap algorithm first 
constructs a neighborhood graph G in which every datapoint xi is connected to its k nearest neighbors. For all 
points xi and xj in graph G that are connected by an edge, the weight of the edge is computed using the Gaussian 

kernel function  wij = ݁ି||ೣ೔షೣೕ||మమ೟మ  where t2 indicates the variance of the Gaussian  leading to a sparse adjacency 
matrix W. Finally each high dimensional data Xi is mapped to a low dimensional vector Yi in a way so as to 
minimize the cost function 

�(Y) =  ∑ ሺܻ݅ െ ܻ݆ሻଶ௜௝  ܹ݆݅ 
Minimizing  is an attempt to ensure that if xi and xj are “close,” then yi and yj are close as well. Compute 
eigenvalues and eigenvectors for the generalized eigenvector problem, 

Lf = λDf 
where D is diagonal weight matrix, and its entries are column  sums of W, Dii = ∑ ܹ݆݅௝  ,L = D − W is the 
Laplacian matrix.The minimization function can be formulated as 

�(Y) =  ∑ ሺܻ݅ െ ܻ݆ሻଶ௜௝  ܹ݆݅ = 2YTLY 

Nishana S S et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 01 Jan 2013 31



This minimization function can be found out by solving the generalized eigen value problem and by using the 
the d eigenvectors fi corresponding to the smallest nonzero eigenvalues form the low-dimensional data 
representation Y. 

Although this type of embedding have some locality-preserving properties, they do not in general 
provide an isometric embedding. Another issue is that  , this algorithm does not specify how it behaves if the 
manifold has a boundary. Also it  implicitly assumed a uniform probability distribution on the manifold 
according to which the data points have been sampled.  
2.6. Maximum variance unfolding (MVU) 

Semidefinite embedding (SDE) or maximum variance unfolding (MVU) is an algorithm that uses 
semidefinite programming  to perform non-linear dimensionality reduction of high-dimensional vectorial input 
data. MVU can be viewed as a non-linear generalization of Principal component analysis. The main objective  
behind MVU is to exploit the local linearity of manifolds and create a mapping that preserves local 
neighborhoods at every point of the underlying manifold. MVU algorithm starts by creating a neighborhood 
graph G by using K Nearest neighbor algorithm. Each input is connected with its k-nearest input vectors 
according to Euclidean distance metric and all k-nearest neighbors are connected with each other. The 
neighborhood graph is "unfolded" with the help of semidefinite programming. Semidefinite programming[6] 
aims to find an inner product matrix that maximizes the pairwise distances between any two inputs that are not 
connected in the neighborhood graph while preserving the nearest neighbors distances. Semidefinite 
programming  is a generalization of linear programming.  

Let X be the original input and Y be the embedding. If  i ,j are two neighbors, then the local isometry 
constraint that needs to be satisfied is:  

|Xi – Xj|2 = |Yi – Yj|2 
MVU reformulates the optimization problem as a semidefinite programming problem (SDP) [6],[7] by defining 
a matrix K that is the inner product of the low-dimensional data representation Y . In SDP the optimization 
problem is formulated as: 

Maximize trace(K) 
subject to K ≥ 0 , ∑ ௜௝௜௝ܭ  = 0 and ׊ i,j                              
where, Kii – 2Kij + Kjj = ||Xi – Xj||2 

The low-dimensional embedding is finally obtained by application of multidimensional scaling  on the learned 
inner product matrix. 
 Semidefinite embedding is much better in revealing the underlying dimension of the data compared to 
LLE and Laplacian eigenmaps. It also guarantees that the nearest neighbors in the embedding is the same as the 
original nearest neighbor for each point while the other two methods do not. On the other hand, semidefinite 
embedding is much slower and harder to scale to large data. 
2.7. Minimum Volume Embedding (MVE) 

Minimum Volume Embedding (MVE) is an algorithm for non-linear dimensionality reduction that uses 
semidefinite programming (SDP) and matrix factorization to find a low-dimensional embedding that preserves 
local distances between points while representing the dataset in many fewer dimensions. MVE follows an 
approach similar to SDE, in that it learns a kernel matrix using an SDP before applying Kernel Principal 
Component Analysis (KPCA). While SDE sometimes works  well, the objective of pulling points apart 
(maximizing the trace of K) and unfolding by maximizing variance can create problems and use more 
dimensions than are necessary. So we would like to pull points apart in the dimensions that we wish  but reduce 
the variance in dimensions that will be removed. Thus, we would like to grow the top few eigenvalues of K 
while shrinking the remaining ones . Ideally, if we knew the intrinsic dimensionality d of the manifold, MVE 
would therefore minimize the following cost function over the eigenvalues: minK א௄ ݂ሺKሻ = minK א௄  - ∑ ௗ௜ୀଵ݅ߣ  +  ∑ ே௜ୀௗାଵ݅ߣ  

Subject to Kvi = ݅ߣvi , vi 
Tvi, =  ߣ ≤ ݅ߣ , ݆݅ߜ௜ାଵ , ׊ i,j. 

where ߣ are the eigenvalues of K in sorted order , vi  is the eigen vector and d is a user specified parameter which 
represents the dimensionality we need to embed. 

f(K) =[tr( ∑ ௜ ௗ௜ୀଵݒ ௜்ݒ  +  ∑ ௜ ே௜ୀௗାଵݒ ௜்ݒ )] = B 
Thus MVE problem can be defined as : minK א௄ ݂ሺKሻ = minK א௄  tr( ∑ ௜ ௗ௜ୀଵݒ ௜்ݒ  +  ∑ ௜ ே௜ୀௗାଵݒ ௜்ݒ ) 
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MVE algorithm begins by forming an affinity matrix A from the input data. A is then used to generate a 
connectivity matrix C where typically each point is connected to its k-nearest neighbors. Initialize K = A and 
find the eigen values and eigen vectors of K. Then by using SDP find K’: 

K’ = minK א௄  tr(KB) 

Perform kernel PCA on K’ to obtain d dimensional output vectors Y1, Y2 ,……, YN . In practice, the MVE 
algorithm does not seem to have any significant local minima since it converges reliably to the same solution. 
2.8. Structure Preserving Embedding(SPE) 

 Structure Preserving Embedding (SPE) is an algorithm for embedding graphs in Euclidean space such 
that the embedding is lowdimensional and preserves the global topological properties of the input graph. 
Topology is preserved through a connectivity algorithms. It’s not a dimensionality reduction method but rather a 
tool for embedding graphs in few dimensions. These two terms are closely related. Many nonlinear 
dimensionality reduction algorithms, such as Locally Linear Embedding (LLE), Maximum  variance Unfolding 
(MVU), and Minimum Volume Embedding (MVE) begin by finding a sparse 
connectivity matrix A that describes local pairwise distances. Preserving distances does not explicitly preserve 
the structure of this graph. LLE, MVU, and MVE, produce embeddings whose resulting connectivity no longer 
matches the inherent connectivity of the data. The problem arise from the fact that the distances between nodes 
that are connected are preserved; however, distances between unconnected nodes are free to vary, and thus can 
drastically change the graph's topology. So to preserve the graph topology we introduce a connectivity algorithm  
which enforces certain linear constraints on the learned kernel matrix K. For each node, the distances to all other 
nodes to which it is not connected must be larger than the distance to the furthest connected neighbor of that 
node. If we use k-nearest neighbor algorithm (knn) , this results in the linear constraints on K:  

Dij > (1 - Aij) maxm(AimDim) 
The k-nearest neighbor algorithm (knn) greedily connects each node to the k neighbors to which the node has 
shortest distance, where k is an input parameter. This linear constraint will vary as the connectivity algorithms 
varies. To choose a unique K from the admissible set in the convex hull generated by these linear constraints,we 
propose an objective function which favors lowdimensional embeddings. 

 The objective function max௞ ஹ଴  ሻ subject to tr(K) ≤1 recovers a low-rank version of spectralܣܭሺݎݐ
embedding. Also applying the linear constraint enforced by knn, SPE preserves the global topology of the 
graph..ie  solve SDP as  

K’ = argmax௞ ஹ଴  tr(KA) 

 subject to Dij > (1 - Aij) maxm(AimDim) 
Apply SVD to K’ and use the top eigenvectors as embedding coordinates. 

3. CONCLUSION 

 This paper  reviews different linear and non linear dimensionality reduction techniques and we discuss 
the various drawbacks of each technique and also the importance of dimensionality reduction. Dimensionality 
reduction is needed in various fields such as computational biology, visualization, image processing and so on. 
From our analysis we can conclude that structure preserving embedding is the most efficient among all other 
existing dimensional reduction technique which actually preserves the global topology of the input graph. That 
is the structure is preserved.  
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