
Self-timed Circuit Device Size Optimization  
for an Input Data Distribution 

 

Alvernon Walker  
 Dept. of Electrical and Computer Engineering 

North Carolina A&T State University 
Greensboro, NC 27411 

 
Evelyn R. Sowells* 

Dept. of Computer Systems Technology 
North Carolina A&T State University 

Greensboro, NC 27411 
sowells@ncat.edu 

336-285-3145 
 

Abstract—  New design techniques with energy-delay characteristics that are superior to that of the synchronous 
timing and control approach are needed today because the throughput of systems realized with this method is limited 
by the power dissipation of nanometer scale devices and the power management strategies developed to insure that 
they do not exceed device thermal constraints.  A circuit timing approach that is not dependent only on the 
propagation delay of the critical path is required to achieve this for a specified technology and supply voltage.  
Optimized self-timed circuits have this characteristic and therefore outperform synchronous designs for a given 
energy dissipation.  A novel self-timed circuit device sizing approach that is based on the circuit input data 
distribution is proposed in this paper.  The analysis is based on the Logical Effort RC model [1] of a ripple-carry 
adder. The model was extracted from SPICE simulation for the TMSC 0.18um process.  The performance and 
energy dissipation of circuits implemented with this approach is 13% and 16% respectively better than circuits 
designed with previously proposed approaches.  

Keywords- self-timed circuits, energy dissipation, ripple carry adder, energy-delay product, and asynchronous 
circuits. 

I.  INTRODUCTION  

     The central focus of digital system design engineers over the past two decades has been on the trade-offs 
between the power/energy and performance of the circuits implemented in current and emerging nanometer-
scale VLSI technologies. A number of techniques have been developed to address this design challenge; one 
approach is based on a class of asynchronous pipelined digital circuit structures that are called self-timed [2]. 
The dynamic power/energy dissipation is reduced in this realization, relative to synchronous implementations, 
because all clocks are generated locally and circuit timing and control is event driven. The performance of these 
circuits can exceed synchronous realization because it is based on the average intrinsic timing of the circuit 
instead of its worst case timing that is used to set the clock frequency in synchronous systems. The circuit 
design process used to determine the device sizing in self-timed circuits/systems is typically the same as that 
used for synchronous realizations [3,4,5]. The input distribution is not considered in this process. A novel self-
timed circuit design technique that out performs previously proposed approaches is presented in this paper. The 
input data distribution is used in the proposed technique to optimize the circuit performance for the respective 
input data set probability distribution. 

The performance and energy dissipation of synchronous and asynchronous digital system is determined in 
part by the geometry of the devices used to realize the system embedded gates. The device geometry is set in the 
design process to minimize the propagation delay along all the paths in the systems. This approach maximizes 
the performance of synchronous systems because the propagation delay of the circuit critical path is also 
minimized. However the performance of asynchronous circuits is not maximized because the average 
propagation delay is not minimized.  The performance and energy dissipation of asynchronous circuits that are 
optimized for the average delay of the completion detection circuit are maximized and minimized respectively. 
The proposed technique achieves this because it is based on the average completion circuit propagation delay 
and the circuit input data distribution. 

A novel self-timed circuit device sizing approach is presented in this paper. The analysis and methodologies 
used to develop the approach is covered in section 2. The performance and energy dissipation of the proposed 
approach is compared to circuits that were designed with device sizing method that are used for synchronous 
circuits in section 3. The conclusion is presented in section 4. 
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The delay is a function of electrical effort of and inverter for a two input NAND gate. The slope of each line 

is the logical effort and the y-intercept is the parasitic delay. As shown, we can adjust the total delay by 
adjusting the electrical effort or by choosing a logic gate with a different logical effort [1].  

D. Circuit Device Sizing with Input Distribution Data    

    To achieve high performance and manage power loss, designers should consider non-traditional levels of 
abstraction, in particularly, input data profiling. Since the switching activity of a logic gate is a strong function 
of the input signal statistics, system designers can use this knowledge to exploit power delay capabilities of a 
circuit.   In this dissertation, a pipelined architecture that intersects the timing function of the circuit itself and 
the data that it is processing is utilized. Using input data distribution to increase self-timed circuit performance 
and decrease energy dissipation is novel because the timing is determined locally, which is a function of the 
circuit and the input data.  

 
 

 
 

Figure 1.4: Circuit Path Activation Probability 
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A few advantages of this proposed technique is the decreased circuit area. This is realized when the probability 
of a path being used is very low then the transistors on the path will be sized smaller. There is also an increase 
average circuit performance because when you include data profiling, performance is even better than self-timed 
alone. The average energy dissipation is decreased since energy is only consumed when and event happens. The 
decrease circuit noise is due in part by the fact that fewer transistors are used which decreases circuit activity. 
The local clock distribution alleviates the greedy global clock network and hazards that can be introduced by 
clock skew. This technique is less sensitive to changes to process variation because timing is generated locally. 
Figure 1.4 gives a graphical illustration of a one bit self-timed RCA circuit path activation probability with eight 
different input distributions (0-7) and four different activation or critical paths illustrated by the different colors 
along the path. 
     There are a few disadvantages. There are very few Computer Aided Design development tools for design a 
verification. Sensitive to charge sharing is another concern that is just the nature of dynamic logic which can be 
offset by circuit design that is sized to minimize the effect.  
     The performance and energy dissipation of synchronous and asynchronous digital system is determined in 
part by the geometry of the devices used to realize the system embedded gates. The device geometry is set in the 
design process to minimize the propagation delay along all the paths in the systems. This approach maximizes 
the performance of synchronous systems because the propagation delay of the circuit critical path is also 
minimized. However the performance of asynchronous circuits is not maximized because the average 
propagation delay is not minimized. The performance and energy dissipation of asynchronous circuits that are 
optimized for the average delay of the completion detection circuit are maximized and minimized respectively. 
The proposed technique achieves this because it is based on the average completion circuit propagation delay 
and the circuit input data distribution.  
     A self-timed full adder is used in this section to demonstrate the proposed device sizing approach. The adder 
is implemented with domino logic and dynamic input latches. It is shown in fig.1.4. The time between the start 
signal (i.e. self-timed circuit local clock) rising transition and the rising transition on the Done node in fig. 1.4 is 
defined as the completion time of the adder. It is a function of the execution time of the self-timed circuit/system 
functional block. It depends on the circuit inputs and therefore it is the average of all the active critical path 
delays for the circuit input space. The active critical path delay is the propagation delay along the longest signal 
path for a given circuit input over the 2௡ valid input combinations of a self-timed circuit with n primary input 
bits. The circuit in fig. 4.24 contains four active critical paths. The circuit four active critical paths from the 
primary inputs (i.e. ܣ௢,			ܤ௢		ܽ݊݀	ܥ௜௡ሻ to the output of the completion detection circuit (i.e. node Done) are shown 
in fig. 1.4 with the respective inputs that activate the paths. The bits that define the numbers in fig. 1.4 are 
organized as follows: ܣ଴ܤ଴ܥ௜௡  where ܣ଴   is the MSB. All equation are normalized with respect to the average 
intrinsic time constant, i.e. τ = 17.527 pSec for TSMC process, of a CMOS process. 
    Recall the formula that was used to calculate the delay, d=gh+p.  Shown below in equations are the estimated 
delay associated with the four active paths for input distributions, where, 
 
  ,୅୓୍ଶଵ୆ଵ଴ is input capacitance of AOI21 gate on input B, labeled 10 in fig. 1.4ܥ 
݃஺ைூଶଵ஼- logical effort of AOI21 gate from input C,  
ேܲைோ- NOR gate parasitic effort 
  ாே –input latches andܦܮ
଴ܹ- probability circuit input is 000,  
ଵܹ- probability circuit input is 001, 
ଶܹ- probability circuit input is 010, 
ଷܹ- probability circuit input is 011,  
ସܹ- probability circuit input is 100,  
ହܹ- probability circuit input is 101,  
଺ܹ- probability circuit input is 110,  
଻ܹ- probability circuit input is 111.  

 
The expected completion time of the full adder is the average of the active critical path delays ܦ଴, ܦଵ,  ,ଷܦ ,ଶܦ	
,ହܦ,ସܦ  ଻. It equals equation (4). The unknown parameters in Fig. 1.4 related to the device geometry isܦ ଺ andܦ
,ே஺ே஽ଵܥ ேைோଶܥ ,ே஺ே஽ଷܥ , ேைோସܥ , ,௜௡௩௛ହܥ	 ,௜௡௩௛଺ܥ  ,௜௡௩௛଻ܥ ,௜௡௩௛଼ܥ  ஺ைூଶଵ஻ଽܥ  ஺ைூଶଵ஻ଵ଴ܥ , ,௜௡௩௛ଵଵܥ ,  ,௜௡௩௛ଵଶܥ
,ௌ௎ெ஺ଵଷܥ ,ௌ௎ெ஺ଵସܥ ,௜௡௩௛ଵ଺ܥ ,ேைோଵହܥ   :௜௡௩௛ଵ଼. The average isܥ ௜௡௩௛ଵ଻ andܥ
 

௔௩௚ܦ ൌ ଴ܹܦ଴ ൅ ଵܹܦଵ ൅ ሺ ଶܹ ൅ ସܹሻܦଶ,ସ ൅ ሺ ଷܹ ൅ ହܹሻܦଷ,ହ ൅ ଺ܹܦ଺ ൅ ଻ܹܦ଻ (4) 
 
completion time of the adder is minimized if these values are set such that, 
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The Newton-Raphson method is used to find the circuit parameters (i.e. unknown capacitances above) when the 
expressions in the equation above vanish. 
 

The equation for branching effort is ܤ ൌ
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Figure 1.5: Trading delay in one path for delay in another 

     The inverting logic in the full adder shown in fig. 1.5 is a mirror image of the un-inverted logic. If the input 
probability distribution is not symmetrically distributed then the delay associated with each side of the adder 
should be different. This is achieved in the proposed approach by adjust the input capacitance of the sum gates. 
The branching effort in the circuit associated with path is: 

 

 

 

 

 

where s is a user defined scaling factor. 

 

The stage effort of the left and right path in fig. 1.5 is: 

 

 

 

 

 

The path delay of the left and right sides is: 

 

 

 

The delay associate with each of these paths as x is swept from 0.1 to 0.9 is shown in fig. 1.6. 
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The Newton-Rapson method is used to find the circuit parameters (i.e. unknown capacitances above) when the 
above expression in equation vanishes. 

III. RESULTS 

 
The adder device sizing information computed for a bimodal distribution is shown in table 1.  The device sizing 
used in traditional proposed realizations is also in the table.  The calculations in the table are based on a circuit 
load capacitancesܥ௅ଵ, ܥ௅ଶ and ܥ௅ଷ of 100, 100 and 100 device width, which in turn affects the performance and 
power dissipation of a circuit since smaller transistors can use less power. Results show that if the input 
distribution is known, the circuit can be optimized with respect to size (transistor width). The input distribution 
technique allows for smaller transistor sizes for data paths that are not begin use and the larger transistor are 
used for data paths that have a higher probability of being used. This, in essence allows the circuit designer to 
boost performance and save power dissipation at the same time. 

TABLE 1: Device capacitance in terms of transistor width 

Device Traditional 
Sizing Approach 

Distribution 
Based Approach 

 ே஺ே஽ଵܥ 11.45  8.15 

 ேைோଶܥ 14.95  4.75 

 ே஺ே஽ଷܥ 8.8  9.64 

 ேைோସܥ 11.4  2.5 

 ௜௡௩௛ହܥ 26.16  17.23 

 ௜௡௩௛଺ܥ 39.42  17.3 

 ௜௡௩௛଻ܥ 15.42  20.2 

 ௜௡௩௛଼ܥ 22.93  13.5 

 ஺ைூଶଵ஻ଽܥ 59.82  35.68 

 ஺ைூଶଵ஻ଵ଴ܥ 25.99  41.74 

 ௜௡௩௛ଵଵܥ 58.49  44.78 

 ௜௡௩௛ଵଶܥ 59.0  44.93 

 ௌ௎ெ஺ଵଷܥ 17  9.36 

 ௌ௎ெ஺ଵସܥ 17  17.07 

 ேைோଵହܥ 59.0  49.21 

 ௜௡௩௛ଵ଺ܥ 57.34  42.47 

 ௜௡௩௛ଵ଻ܥ 57.34  57.34 

 ௜௡௩௛ଵ଼ܥ 101  92.14 
 

The performance and energy dissipation of the traditional and distribution based full adder device sizing 
approach is shown in table 2. The characteristics in this table were computed using logical effort and model 
parameters from SPICE simulation of the adder gates in the TSMC 0.18um process with a supply voltage ஽ܸ஽of 
1.8volts. 
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TABLE 2: The Performance and Energy of Traditional and Distribution Based Device Sizing 

Circuit Characteristics Traditional 
Approach 

Distribution Based 
Approach 

Characteristic ∆ 
Difference 

Characteristic 
percentage 
Difference 

Average Completion 
Time [pSec] 

465.727 432.673 33.054 7.1% 

Expected Dynamic 
Energy Dissipation 

[pJoules] 

1.90598 1.64919 0.25679 13.5% 

 
One can further optimize the circuit by manipulating different sides of the circuit. We closely examine data 
paths that are more active and allow larger transistor widths within the active data path by trading size in one 
side of the circuit for another. This is accomplished by using the branching effort equation which is a part of 
calculating the logical effort. Table 3 below shows the results of distribution based device sizing with branching 
effort giving a 13% decrease in delay and 16% improvement in power dissipation. 

TABLE 3: Device capacitance in terms of transistor width 

Full Adder 

Side 

Branching 

Effort 
Nominal Bimodal[] Binomial[] 

Left-Side B0 3.889 9.22128 2.7882 

B0’ 5.8335 3.12388 14.3051 

Right-Side B2 3.889 9.22128 2.7882 

B2’ 5.8335 3.12388 14.3051 

 B1 2.3335 2.3335 2.3335 

B1’ 2.3335 2.3335 2.3335 

Average 

Propagation 

Delay 

 

21.7258 

(22.9488) 

21.2617 

(24.0977) 

Speedup  5.629% 13.39% 

Energy % 

Reduction 
 11.567% 16.78% 
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IV. CONCLUSION AND DISCUSSION 

     The performance and energy dissipation of self-timed circuits/systems depend on the circuit gate-level 
implementation, device sizing and input distribution. The device sizing approach used in previously proposed 
self-timed circuits is identical to that used for synchronous realizations. Therefore it is only optimized to 
minimize the propagation delay of all circuit signal paths. The performance and energy dissipation, i.e. average 
completion time and energy dissipation, of the proposed approach for a self-timed circuit is optimized, with 
respect to device sizing, for a given input distribution. It is less than realizations that do not considered this 
feature of the input space. This design process causes the active critical path delay of the circuit paths with the 
highest probability of being active to be less than the path delay in a realization that does not use input data. It 
also generates delay paths with larger propagation delay than that in previously proposed self-timed circuits 
design for path that are rarely used, i.e. paths associated with low probability. Both the performance and energy 
dissipation of self-timed circuits are reduced if the device sizing is optimized for the input distribution. 
     In short, performance is restricted by power and as chip density and frequency increase, synchronous 
designers try to figure out ways to deal with power/performance tradeoff. Can we get a better Energy Delay 
Product? Asynchronous designers do not have to deal with this tradeoff because of the nature of the logic 
design; we can use fewer transistors and operate at faster speeds. 
    Using self-timed circuits coupled with data profiling, one can exploit the natural properties --faster speeds, 
less transistors and path sizing– to optimize power dissipation and performance. This gives us a superior Energy 
Delay Product. This technique is novel because there has been no research that alters the logical effort formula 
by manipulation the branching effort to trade delay in one part of the circuit for another. We can essentially 
control the flow of data by allowing highly probable paths to be sized larger and vice versa. With a 13% 
increase in performance and 16% decrease in power dissipation. 
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