
Comparative Study on Text Pattern
Matching for Heterogeneous System

Priya jain
MTech 3rd Sem Computer Science and Engineering

Rungta College Of Engineering & Technology
Bhilai, Chhattisgarh, INDIA

pj520330@gmail.com

Shikha Pandey
Asst. Professor (CSE)

Rungta College Of Engineering & Technology
Bhilai, Chhattisgarh, INDIA

Shikhamtech2008@gmail.com
Abstract— Pattern-matching has been routinely used in various computer applications, for example, in editors,
retrieval of information either textual, image, or sound and searching nucleotide or amino acid sequence patterns
in genome and protein sequence databases. Pattern-matching algorithm matches the pattern exactly or
approximately within the text. This paper presents the comparative analysis of various multiple pattern Text
matching algorithms. The highly efficient algorithms like Brute Force algorithm, Knuth Morris Pratt algorithm,
Finite Auto Mata algorithm, Bayer Moore algorithm for exact and approximate multi-object and multi-pattern
matching on heterogeneous systems. After performing a detailed study on the above mentioned algorithms, the
best algorithm having least complexity is chosen. Consequently, the comparison result proves that Bayer Moore
Pattern matching algorithm is the most efficient One to apply on heterogeneous system for pattern matching.
Keywords- Single pattern, Multiple pattern, Exact pattern, Matching, Pair, Sequence, Heterogeneous
Introduction (Heading 1)

I. INTRODUCTION

Pattern Matching is the act of checking some sequence of tokens for the presence of the constituents of some
pattern. It is a process which takes input as a pattern[0..P-1] of length P and text[0..T-1] of length T, where P is
generally very much smaller than T. An exact pattern-matching is finding all the occurrences of a particular
pattern (x) x1x2... xm) of m-characters in a text (y) y1 y2 ... yn) of n-characters which are built over a finite set
of characters denoted by Σ and the size of this set is equal to σ.
Pattern matching techniques has two categories:

• Single pattern matching technique
• Multiple pattern matching technique

In single pattern matching it is required to find all occurrences of the pattern in the given input text. And if more
than one pattern is matched against the given input text simultaneously, then it is known as, multiple pattern
matching. The pattern matching algorithms is widely used in network security environments. In network
security, the patterns is a string indicating a network intrusion, attack, virus, and snort, spam or dirty network
information, etc.
Pattern-matching algorithms scan the text with the help of a window, whose size is equal to the length of the
pattern. The first step is to align the left ends of the window and the text and then compare the corresponding
characters of the window and the pattern; this procedure is known as attempt. After a match or a mismatch of
the pattern, the text window is shifted to the right. The number of characters required to shift the window on the
text may vary according to various algorithms. This procedure is repeated until the right end of the window is
within the right end of the text.
In this paper we will introduce pattern matching algorithms and the tools, which are used to further implement
the tasks in real life. The main objective behind the pattern-matching algorithms is to reduce the total number of
character comparisons between the pattern and the text to increase the overall efficiency. The improvement in
the efficiency of a search can be achieved by altering the order in which the characters are compared at each
attempt and by choosing a shift factor that permits the skipping of a predefined number of characters in the text
after each attempt.
The more practical solutions to the real world problems can be generated by the Multiple String Pattern
Matching Algorithms. String Matching Algorithms like Brute Force Algorithm, Knuth Morris Pratt Algorithm,
Finite Automata Algorithm, Bayer Moore Algorithm etc. are focused in this paper. Each algorithm has certain

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 537

merits and demerits. This paper presents the comparative analysis of various multiple string pattern matching
algorithms based on different parameters.

II. TEXT PATTERN MATCHING ALGORITHM

A. Brute Force Algorithm

In this algorithm perform linear search. The simplest algorithm for string matching is a brute force
algorithm, simply try to match the first character of the pattern with the first character of the text, and if we
succeed, try to match the second character, and so on; if hit a failure point, slide the pattern over one
character and try again. When we find a match, return its starting location.

 Steps:

 Step 1:Align pattern at beginning of text
Step 2: Moving from left to right, compare each

Character of pattern to the corresponding
Character in text until

• All character are found to match
• A mismatch is detected

Step 3: While pattern is not found and the text is
 Not yet exhausted, realign pattern one
 Position to the right and repeat.

 Algorithm: Brute force string Match (T[0..n-
 1], P{0..m-1])

 //Implements brute force string matching.
 // Input: An array T[0..,n-1] of n characters
 Representing a text.
// an array P [0.., m-1] of m characters representing a
 Pattern.
// Output: The index of the first character in the text
 That starts a matching substring or -1 if the
//search is unsuccessful
 for i 0 to n-m do
 j 0
 while j< m and p[j] =T[i+j] do
 j j+1
 if j=m return i
 return -1
Check each position in the text T to see if the pattern P starts in that position

A n d r e w

Figure :1. Brute Force Algorithm

Strength of Brute Force Algorithm is wide applicability, simplicity ,yields reasonable algorithms for some
important problems (e.g. matrix multiplication, sorting, searching, string matching).and Weaknesses is rarely
yields efficient algorithms ,some brute-force algorithms are unacceptably slow ,not as constructive as some
other design techniques.
B. Knuth Morris Pratt Algorithm
The algorithm was conceived in 1974 by Donald Knuth and Vaughan Pratt, and independently by James H.
Morris. The three published it jointly in 1977. Knuth, Morris and Pratt is a linear time algorithm for the string
matching problem. Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the
pattern more intelligently. The implementation of Knuth-Morris-Pratt algorithm is efficient because it minimizes

A n d r e w

r e w r e w P

T

P

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 538

the total number of comparisons of the pattern against the input string.KMP algorithm first calculate PREFIX
function and by using the output of prefix function the matching will be started.
Components of KMP algorithm :

The prefix function, Π :

The prefix function,Π for a pattern encapsulates knowledge about how the pattern matches against shifts of
itself. This information can be used to avoid useless shifts of the pattern ‘p’. In other words, this enables
avoiding backtracking on the string ‘S’.
Steps:

i. m  length[p] //’p pattern to be matched

ii. Π[1]  0
iii. K  0
iv. for q  2 to m
v. do while k > 0 and p[k+1] != p[q]

vi. do k  Π[k]
vii. if p[k+1]=p[q]

viii. then k k+1
ix. return Π

The KMP Matcher:

The KMP Matcher, with pattern ‘p’, string ‘S’ and prefix function ‘Π’ as input, finds the occurrence of ‘p’ in
‘S’ and returns the number of shifts of ‘p’ after which occurrence is found.
Steps:

KMP-Matcher(S, p)

i. n  length[S]
ii. m  length[p]

iii. Π  Compute-Prefix-Function(P)
iv. q  0 //number of characters matched
v. for i  1 to n //scan S from left to right

vi. do while q > 0 and p[q+1] != S[i]
vii. do q  Π[q] //next character does not match

viii. if P[q+1] = T[i]
ix. then q  q + 1 //next character matches
x. if q = m //is all of p matched?

xi. then print “Pattern occurs with shift” i – m
xii. q  Π[q] // look for the next match

In the above algorithm T and P indicate TEXT and PATTERN. The total number of character present in the text
and pattern will be assigned to n and m in step 1 and step 2 respectively. The application of PREFIX TABLE
comes to picture in step 3 to select the values from that table. In step 4 q indicate the number of matching
character, and the for loop started no 5 to step no 12 calculate that after how many characters the given Pattern
is matched with the text. The calculation part will be done by using subtraction of the increment value of i
(where q=m) , and value of m (number of character present in pattern).the function of step 12 is used to
calculate how many times the pattern is present in a Text. Sometimes there may be more than one patterns
present in a given text.
Example:

Step 1:

a b c a b a a b c a b a c

a b a a

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 539

Step 2:

a b c a b a a b c a b a c

a b a a
Step 3: compare P[3] with T[3]

a b c a b a a b c a b a c

a b a a
Since mismatch is detected, shift ‘P’ one position to the left and perform steps analogous to those from step 1
to step 3. At position where mismatch is detected, shift ‘P’ one position to the right and repeat matching
procedure.
Step 4:

a

b c a b a a b c a b a c

a b a a

Figure:2. KMP algorithm

Finally, a match would be found after shifting ‘P’ three times to the right side.
C. Finite Automata algorithm
An automaton with a set of states, and its “control” moves from state to state in response to external “inputs” is
called a finite automaton. A finite state machine (FSM, also known as a deterministic finite automaton or DFA)
is a way of representing a language (meaning a set of strings; we're interested in representing the set strings
matching some pattern). It's explicitly algorithm, represent the language as the set of those strings accepted by
some program.
Finite Automata:
A finite automata M is a 5-tuple(Q,q0,A,∑,δ)
• Q is a finite set of states,
• q0 € Q is the start state,
• ACQ is a distinguished set of accepting states,
• ∑ is a finite input alphabet,
• δ is a function from Q*∑ into Q , called the transition function of M.
The finite automata begins in state q0 and reads the character of its input string one at a time .if the automation
is in state q and reads input character a, it moves (“make a transition”) from state q to state£(q, a).whenever its
current state q is a member of A, the machine M is said to have accepted the string read so far .An input that is
not accepted is said to be rejected.
FINITE_AUTOMATION MATCHER (T,£,M)

i. n  length[T]
ii. q  0

iii. for i  1 to n
iv. do q  δ (q, T[i])
v. if q = m

vi. then print “Pattern occurs with shift” i-m
 for line 4 that present in Finite automation matcher ,need the transition table or transition function.

COMPUTE_TRANSITION _FUNCTION (P,∑)

i. m length [P]
ii. for q  0 to m

iii. do for each character a € ∑
iv. do k min(m+1, q+2)
v. repeat k  k-1

vi. until Pk Pq0
vii. δ(q, a)  k

viii. Return δ

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 540

 Example:

 Figure:3. Finite - Automata Table :1. Transition Table for Finite Automata

A simple two state finite automaton with state set Q={0,1},start state q0=0, and input alphabet ∑={a,b}.(a)
A tabular representation of the transition function δ.(b) An equivalent state- transition representation of the
transition diagram. State 1 is the only accepting state. Directed edges represent transition s. for example ,
the edge from state 1 to state 0 labeled b indicates δ(1,b)=0.
In Finite Automata algorithm a Text and a Pattern will be provided some times with a transition function
and with a transition table. By using these table and function to calculate after how many character the
given pattern matched with the text.

D. Boyer Moore Algorithm
Boyer-Moore algorithm was developed by Robert S. Boyer and J Strother Moore in 1977 .it is consider the
most efficient string-matching algorithm in usual applications, for example, in text editors and commands
substitutions. The reason is that it woks the fastest when the alphabet is moderately sized and the pattern is
relatively long.
The algorithm scans the characters of the pattern from right to left beginning with the rightmost one. In
case of a mismatch (or a complete match of the whole pattern) it uses two pre-computed functions to
shift the window to the right. These two shift functions are called the good-suffix shift (also called
matching shift and the bad-character shift (also called the occurrence shift).
Assume that a mismatch occurs between the character x[i]=a of the pattern and the character y[i+j]=b of
the text during an attempt at position j.Then, x[i+1……..m-1]=y[i+j+1….....j+m-1]=u and x[i] y[i+j].
The good-suffix shift consists in aligning the segment y[i+j+1.... j+m-1]=x[i+1.... m-1] with its
rightmost occurrence in x that is preceded by a character different from x[i] .

 b u

 a u

 a u

Figure .4. The good-suffix shift, u re-occurs preceded by a character c different from a.

The bad-character shift consists in aligning the text character y[i+j] with its rightmost occurrence
in x[0 .. m-2].

 b u

 a u

 b Contains no b

 Figure.5. The bad-character shift, a occurs in x.

If y[i+j] does not occur in the pattern x, no occurrence of x in y can include y[i+j], and the left end of the
window is aligned with the character immediately after y[i+j], namely y[i+j+1]

1 o

0 0

0

1

 a b
 input state

y

x shift

x

y

x shift

x

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 541

 b u

 a u

Contains no b

 Figure.6. The bad-character shift, b does not occur in x.

Last Function:

Define a function last(c) that takes a character c from the alphabet and specifies how far may shift the
pattern P if a character equal to c is found in the text that does not match the pattern
 Index of last occurrence if c is in pattern p
last(c) =
 -1 other wise

BOYER_MOORE_MATCHER (T, P)

Input: Text with n characters and Pattern with m characters
Output: Index of the first substring of T matching P

i. Compute function last
ii. i ← m-1

iii. j ← m-1
iv. Repeat
v. if P[j] = T[i] then

vi. if j=0 then
vii. return i // we have a match

viii. else
ix. i ← i -1
x. j ← j -1

xi. else
xii. i ← i + m - Min(j, 1 + last[T[i]])

xiii. j ← m -1
xiv. until i > n -1
xv. Return "no match"

The computation of the last function takes O(m+|∑|) time and actual search takes O(mn) time. Therefore the
worst case running time of Boyer-Moore algorithm is O(nm + |∑|)
The Boyer-Moore algorithm uses two different heuristics for determining the maximum possible shift distance
in case of a mismatch: the "bad character" and the "good suffix" heuristics. Both heuristics can lead to a shift
distance of m. For the bad character heuristics this is the case, if the first comparison causes a mismatch and the
corresponding text symbol does not occur in the pattern at all. For the good suffix heuristics this is the case, if
only the first comparison was a match, but that symbol does not occur elsewhere in the pattern.

III. COMPARATIVE ANALYSIS OF SELECTED MLTIPLE PATTERN STRING MATCHING ALGORITHM

In this paper, we analyzed selected multiple pattern string matching algorithms on the basis of time complexity,
search type, key ideas and approach parameters. Each algorithm has certain advantages and disadvantages.
The main advantage of Brute force algorithm is that wide applicability, simplicity, reasonable algorithms for
some important problems (e.g., matrix multiplication, sorting, searching, string matching).Weakness of the
brute-force algorithms are unacceptably slow. It take much time as it search linearly.
KMP runs in optimal time: O(m+n). The algorithm never nseeds to move backwards in the input text, T. KMP
doesn’t work so well as the size of the alphabet increases, more chance of a mismatch (more possible
mismatches).mismatches tend to occur early in the pattern, but KMP is faster when the mismatches occur later.

y

x shift

x

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 542

Finite state machine not suited to all problem domains, should only be used when a systems behavior can be
decomposed into separate states with well defined conditions for state transitions. This means that all states,
transitions and conditions need to be known up front and be well defined. Larger systems implemented using a
FSM can be difficult to manage and maintain without a well thought out design
Boyer-Moore pattern matching algorithm ,which achieves sub-linear running time by skipping characters in the
input text according to the ―bad character and ―good suffix heuristics. Boyer-Moore algorithm is extremely
fast on large alphabet (relative to the length of the pattern).

IV. CONCLUSION

This paper is based on multiple pattern string matching algorithms. There are various scenarios where we can
use a Particular type of algorithm. Comparison result proves that Bayer Moore Pattern matching algorithm is the
most efficient One to apply on heterogeneous system for pattern matching. The Bayer Moore algorithm is to be
very efficient as well as fast and gives the accurate results .

REFERENCES
[1] Aho, Alfred V,Margaret J.Corasick “Efficient string Matching: An aid to bibliographic search,” Communication of the ACM 18(6) :

333-340, June 1975.
[2] Zeeshan Ahmed Khan1, R.K Pateriya2 “Multiple Pattern String Matching Methodologies: A Comparative Analysis”. International

Journal of Scientific and Research Publications, Volume 2, Issue 7, July 2012, ISSN 2250-3153.
[3] Devaki-Paul, “Novel Devaki-Paul Algorithm for Multiple Pattern Matching” International Journal of Computer Applications (0975 –

8887) Vol 13– No.3, January 2011.
[4] Raju Bhukya, DVLN Somayajulu, “Exact Multiple Pattern Matching Algorithm using DNA Sequence and Pattern Pair”. International

Journal of Computer Applications (0975 – 8887) Volume 17– No.8, March 2011.
[5] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary, “Multiple Skip Multiple Pattern Matching algorithms”. IAENG

International Vol 34(2) 2007.
[6] Rami H. Mansi, and Jehad Q. Odeh, "On Improving the Naive String Matching Algorithm," Asian Journal of Information Technology,

Vol.8, No. I, ISS N 1682-3915,2009, pp. 14-23.
[7] S.Viswanadha Raju, S R Mantena, A.Vinaya Babu, G V S Raju. “Efficient Parallel Pattern Matching using Partition Method”.

Proceedings of the Seventh International Conference on Parallel and Distributed Computing,Applications and Technologies
(PDCAT'06) 0-7695-2736-1/06 $20.00 © 2006 IEEE.

[8] R.A.Wagner, M.J.Fischer, “The String to String Correction Problem”, Journal of the ACM, vol.21, pp. 168-173,1974.
[9] Vlastimil Kosar, Jan Korenek. “Reduction of FPGA Resources for RegularExpression Matching by Relation Similarity”. 978-1-4244-

9756-0/11/$26.00 ©2011 IEEE.
[10] Robert S. Boyer and J. Strother Moore.“A fast string searching algorithm. Communications” of the ACM, 20(10):762–772, 1977.

Priya jain et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 11 Nov 2012 543

	Comparative Study on Text PatternMatching for Heterogeneous System
	Abstract
	Keywords
	I. INTRODUCTION
	II. TEXT PATTERN MATCHING ALGORITHM
	III. COMPARATIVE ANALYSIS OF SELECTED MLTIPLE PATTERN STRING MATCHING ALGORITHM
	IV. CONCLUSION
	REFERENCES

