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Abstract- Proteins form a very important part of a living cell. The biological functions are carried out by 
the proteins within the cell by interacting with other proteins in other cells. This is called protein-protein 
interaction. Protein-Protein Interactions are very important in understanding the diseases and finding 
their cause. It can also provide the basis for new therapeutic approaches. A number of classifiers have 
been developed till date to classify protein-protein interactions namely SVM, SVM-KNN, Back-
propagation Neural Network (BPNN). In this work Jordan Recurrent Neural Network (JRNN) is used to 
classify the protein-protein interactions. The classifier developed for this work uses amino acid 
composition of proteins as input to classify the percentage of interacting and non-interacting proteins. 
The results obtained were best at the threshold value of zero. The classifier gives an accuracy of 97.25% 
which is 8.7% more than BPNN. The overall accuracy of JRNN for threshold ranging from -1 to +1 with 
a difference of 0.1 comes out to be 80.1%. 
 
Keywords: Protein-Protein Interaction; Jordan Recurrent Neural Network (JRNN); Amino acid 
composition; Back-Propagation Neural Network 
 

I.   INTRODUCTION 
Bioinformatics is a conceptualization of biology in terms of molecules i.e. in sense of physical-chemistry and 
then applying informatics techniques, derived from math, computer science and statistics, to understand and 
organize the information associated with these molecules on a large scale. Bioinformatics is more of a tool than 
a discipline, the tools for analysis of Biological Data. The primary goal of bioinformatics is focus on developing 
and applying computationally intensive techniques (e.g. pattern recognition, data mining, machine learning 
algorithms and visualization) to increase the understanding of biological processes. The bioinformatics is 
extremely broad and is rapidly changing, particularly in recent years. The current scope of bioinformatics is 
mainly at bimolecular level particularly on macromolecules such as DNA, RNA. Proteomics one of the fields of 
bioinformatics deals with the study of proteins especially its structure and function. Proteins work in 
collaboration with other proteins so the main goal of proteomics is predict the proteins that interact [14]. 
Prediction and classification of interacting and non-interacting proteins is helpful in improving the 
understanding of diseases. Protein-Protein Interaction has become a very important research area now a days. 
Protein-Protein Interactions occur when proteins bind together to carry out some biological function. The most 
important molecular process in a cell such as DNA replication is carried out by large number of protein 
components organizes by their protein-protein interactions [15]. Protein interactions are studied in the aspect of 
biochemistry, quantum chemistry, molecular dynamics, chemical biology, signal transduction and other 
metabolic or genetic/epigenetic networks. Most of the biological functions are performed due to the protein-
protein interactions. For example, signals from the exterior of a cell are mediated to the inside of that cell by 
protein–protein interactions of the signaling molecules. This process, called signal transduction, plays a 
fundamental role in many biological processes and in many diseases.  
The classification of interacting and non-interacting proteins has been done using various classifiers till date 
namely SVM [1], SVM-KNN [2], BPNN [3] but no classifier gave better accuracy. In this work a classifier is 
developed using Jordan Recurrent Neural Network (JRNN). The JRNN classifier takes amino acid composition 
of proteins as input. Amino acid composition has been calculated for different purposes in [4] [5]. In [4] the 
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where fi (i=1,2,3,........,20) are the normalized occurrence frequencies of the 20 native amino acids in P and T the 
transposing operator. Accordingly, the amino acid composition of a protein can be easily derived once the 
protein sequencing information is known.  
In this work the sequence is represented by a vector a vector of dimension 21 as used in [4] which represents 
twenty natural amino acids and one dummy amino acid ‘‘X’’. Amino acid composition of a pattern was 
computed using the following formula [4] [5]: 
                                                                                                                              (3)                                          

where comp(i) is the fraction of residue or composition of residue of type i. Ri and N are number of residues of 
type i and total the number of residue in protein i (length of protein) respectively.          
C. Jordan Recurrent Neural Network 
The Jordan Neural Network is a simple recurrent network (SRN) developed by Michael I. Jordan [18] in 1986. 
The context layer holds the previous output from the output layer and then echos that value back to the hidden 
layer's input. The hidden layer then always receives input from the previous iteration's output layer [17]. Jordan 
neural networks are generally trained using genetic, simulated annealing, or one of the propagation techniques. 
Jordan neural networks are typically used for prediction. The architecture of Jordan Recurrent Neural Network 
is shown in Fig. 2. 
In this work a Jordan Recurrent Neural Network based classifier is designed using RSNNS [19] package of 
CRAN R [20]. The network used five-fold cross validation to train and test the input data. The neural network 
used JE_BP learning function, which is a standard back-propagation training function, to train the network. 
 

III.   RESULTS 
The results of the Jordan Recurrent Neural Network classifier are shown in Table I. There are a total of 1379 
protein pairs that are taken out of which 753 are interacting protein pairs and 656 are non-interacting protein 
pairs.  
   

                                                       Output Layer 

 

                                                                                                             Hidden Layer 

 

 

       Input Layer                                                                                                                  Context Unit 

                    

                                        1                   xt-1              xt-12              xt-13 

Figure 2.  Jordan Recurrent Neural Network 
From the confusion matrix shown in table I the sensitivity of Jordan recurrent neural network classifier is found 
to be 95.09% and the specificity is 99.84%. These values show that Jordan recurrent neural network classifier 
can differentiate between interacting and non-interacting protein pair with high probability. The positive 
predictive value (PPV) and negative predictive value (NPV) are calculated to be 99.86% and 94.41% 
respectively. The high values of PPV indicate that Jordan recurrent neural network classifier can correctly 
identify interacting protein pairs.  
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classification model tries to overcome this problem. The Jordan Neural Network takes amino acid composition 
of protein pairs to classify them interacting and non-interacting. On comparing, Jordan neural network 
classification model is found to have higher accuracy (97.25%) as compared to BP neural network (88.55). The 
percentage improvement is 8.7%. 
Jordan neural network classification model outperforms the other methods for protein-protein interaction 
classification. Jordan neural network classification model proves to be better model with higher accuracy along 
with improved specificity and sensitivity than the various existing techniques. 
A. Future Scope  
Jordan recurrent neural network classifier the input given had almost equal positive and negative patterns. It 
gives the output which shows very good results nearly equal to perfect. In this model the input can be changed 
i.e. the input file can be altered having more negative patterns and less positive patterns as compared to the 
negative patterns to get better results than the results given by Jordan neural network classification model with 
input file having equal negative and positive patterns.  
The Jordan Neural Network can also use other parameters related to proteins to predict and classify protein-
protein interactions. These parameters include the six physiochemical properties of proteins namely assessable 
residues, buried residues, hydrophobicity, molecular weight, polarity and average area buried as used in [3]. 
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