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Abstract— Large  Eddy  Simulations (LES)  contains 3D  instantaneous velocity  fields  as  well as  passive 
scalar concentration field describing the  coherent flow structures. The  study of coherent flow structures 
has  a major  impact on the  mixing  of the  fuel and  the  oxidizer.  The analysis of these  structures in a 
turbulent jet  is  essential   in  understanding  the  fundamentals  of fluid  dynamics.   Therefore there   is  
a  need  for methods  that can identify  and  analyze these structures. In this  paper,  we use machine-
learning methods such as Proper  Orthogonal Decomposition (POD) and  Dynamic Mode Decomposition 
(DMD)  to analyze  the  coherent  flow  structures.  We  used  2D  LES  of subsonic  jets  as  our  data, 
with  Reynolds number corresponding to Re:  6000 (low pressure) , 10,000 (medium pressure), and 13,000 
(high pressure). Results for POD  modes and  DMD modes are discussed  and  compared. 
Keywords- POD, DMD, Proper Orthogonal Decomposition, Dynamic Mode Decomposition,  LES, 
Turbulence. 

I.  INTRODUCTION 
Today  one of the  major  problems  of oil based  energy  and  transport sectors  is exhaust  gas emissions.   

Re- searchers  are  searching for ways to  reduce  the emission.   Therefore,  alternative fuels such as Natural Gas 
(NG)  are of great  interest. However, the shift from oil based fuels to alternative fuels takes several decades. 
Therefore,  further  research  is needed  on the  Internal  Combustion Engine (ICE). ICE  is involved  with  
extreme  fluid velocities.  Hence the  Reynolds  number  of the  flow is also substantial indicating  the  presence 
of turbulence.  In fluid dynamics,  turbulence  or turbulent flow is a flow regime characterized by chaotic  and 
stochastic  fluid property  changes.  This includes low momentum diffusion, high momentum convection,  and a 
rapid  variation of pressure and velocity in space and time.  In other  words, turbulent flows  are characterized by 
fluctuating velocity fields. These fluctuations mix transported quantities such as momentum, energy, and species 
concentration.  Turbulence plays  an  important role when  modeling  the  combustion  process in the combustion  
chamber. 

To gain a deeper understanding on combustion  process and turbulence, machine-learning methods can be 
utilized.   This  field allows computers  to adopt  behaviors  based  on training data.   These  methods  recognizes 
complex patterns and  makes intelligent decisions based  on data  [2]. This  techniques  include:  reduced  order 
models or dimensionality reduction methods,  statistical, and machine vision methods.  Dimensionality reduction  
is a technique  used to find a reduced  order  model on a given data.   Such a technique  includes  feature selection 
and feature  extraction methods.  Feature selection is based on selecting a subset  of variables  which best define 
the data,  whereas feature  extraction transforms the data  from high-dimensional space to a space of fewer 
dimensions  [2].  The  data  transformation may be linear,  as in Proper  Orthogonal Decomposition (POD)  [7] 
and Dynamic  Mode Decomposition  (DMD)  [10]  [8]. 

From  the  literature, it is expected  that POD  and  DMD would be good methods  for analyzing  the  flow 
structures. For example, a paper by Perrin  et.  al [7] used POD to obtain phase averaged turbulence properties for 
flow past  a cylinder.  In highly turbulent flows, the  coherent flow structures are difficult to identify  due to the 
combination of organized and chaotic  fluctuating motions.  Using POD  analysis it is shown in [4], that von 
Karman vortices  can be reproduced  within  the  first few modes.  POD  has been used as a tool for the 
comparison  of Particle Image Velocimetry  (PIV)  and Light Eddy  Simulation(LES) data  in [5] and it is also 
shown  that POD  modes have a good qualitative agreement between PIV  and  LES. A paper  by Schmidt  et. al 
[9], used DMD to a sequence of flow images of a slow jet entering  quiescent fluid showcased the detection of 
dynamically  relevant coherent structures that play an important role in characterizing the fluid behavior over 
processed time interval. 

To  identify  the  coherent flow structures caused  by  the  turbulence, we study  3 cases  of Large  Eddy 
Simulations (LES) of subsonic  jets  with  Reynolds  number  corresponding  to  Re:  6000, 10,000, and  13,000. 
LES is a novel numerical  method  that can be used to carry  out the fluid dynamics  simulations  of turbulent 
flows using  fine numerical  resolution.   By utilizing  LES,  a highly  realistic  turbulent fluid dynamics  can  be 
produced.   The  secret  lies in the  high  level accuracy  of the  LES method.   Hence coherent  flow structures as 
seen in the  experiments  can  be reproduced  in simulations.    The  purpose  of the  simulations  is to  shed 
further  light into the  mixing process of Natural Gas (NG)  and  air.  A long standing problem  in this  kind of 
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simulations  is the random and strongly transient nature of the jet data.  The randomness  of the data  hides the 
underlying  coherent flow structures of the jet which are expected to be of importance when trying  to explain the 
jet behavior  and possible cycle to cycle variations in Direct Injection  (DI) NG engines.  It is worth to do POD  
and  DMD analysis  and  there  by shed further  light into this  problem.  These  simulations  were carried out by 
V.Vuorinen  and the simulations  are described in [12]. The motivation for this simulations  lies in ICE 
applications where NG, i.e Methane  (C H4 ) is considered to be the best alternative fuel for conventional  diesel 
fuels. There are advantages  and disadvantages in using NG. Advantages  may be significant reduction of N Ox 
and  soot  emissions which are  the  most  unwanted  diesel emissions.   The  disadvantages are  considered  very 
harmful  to the environment as the incomplete  combustion  of NG releases CH4   into the atmosphere which is a 
harmful  greenhouse  gas.  The  experiments  study  the  role of the  injection  pressure  in the  jet mixing.  The 
simulations  carried out by V.Vuorinen  show that the turbulent structures in the beginning of the simulations 
produce a rolling tip vortex and also a growing Kelvin-Helmholz  instability and at the later  time the initially 
laminar  flow becomes turbulent. 

The objectives of the paper is as follows: 
• POD  and DMD is implemented with Matlab  and used to analyze  LES of subsonic data. 
• The potential of POD  and DMD in the ICE applications is shown. 
• Results  for POD  and DMD are discussed and compared. The organization of this report  is as follows: 

In section 2 we study  the computational methods  for POD  and DMD. Section 3 deals with the experiments and 
implementation details.   Finally,  conclusions  are  drawn  and  further  research  directions  are  discussed  in 
section 4. This section is a part of the paper written for ICLASS conference [14]. 
 

II. COMPUTATIONAL METHODS 
 
In this section we study  about  KLD, POD  and DMD methods. 
A. The Karhunen-Loeve Decomposition (KLD) 

 
POD is known by various names like KLD, Principle Componant Analysis (PCA) and Singular Value 
Decompostion (SVD). It has various applications in other fields such as Information retreival[13]. In the context 
of turbulent flows, POD is a series of fluid variable representation. This theory is best described in [4]. For 
simplicity we consider it to be a scalar )(tx . It can be kinetic energy, concentration, pressure or temperature. 

)(tx  can be represented in the form 

 Tttctx nn
n

<<0)(=)(ˆ
1=

ϕ
∞

 (1) 

 
 where )(tnϕ  is a set of orthonormal basis functions on the interval )(0,T . Mathematically this requires 
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and the coefficients nc  are random variables (when dealing with random processes like turbulence) given by 
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T
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0
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The POD method uses a set of basis functions such that the mean square error of the projections is minimised. 
 

 Tttxtx <<00>)](ˆ)([< 2−  (4) 
 
To obtain the POD modes, the following eigenvalue problem needs to be solved. 
 

 TttdttttR
T

<<0)(=)),( 122(210
λϕϕ  (5) 

 
where ),( 21 ttR  is the auto-covariance of the fluid variable, )(tx . The basis function nϕ  are the eigenvectors 

and the coefficients nc  are related to the eigenvalues nλ  by 
 )(>=< * mncc nmn −δλ  (6) 
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From the above formula POD modes can be calculated. The eigenvalues of each POD mode represents energy 
contained in each mode. The magnitudes of the eigenvalues are in decreasing order such that 1> +nn λλ .  
B.  Method of Snapshots 
The POD was first introduced in the field of Computational Fluid Dynamics (CFD) by Lumley [1]. The present 
day analysis uses method of snapshots introduced by Sirovich [11]. Here each LES data at a particular interval 
of time, interpolated on a uniform grid is considered to be one snapshot. This method was introduced to reduce 
the POD computations. To compute the POD using the Eq. 5 requires solving nn×  eigenvalue problem. The 
main problem is the calculation of autocovariance matrix R . Snapshots method proposes that autocovariance 
matrix can be approximated by a summation of ’Snapshots’.  

 n
j

n
i

M

n
ij xx

M
R 

1=

1=  (7) 

The snapshots are assumed to be distanced by a time or a spacial distance greater than the corelation time or 
distance. Nowadays this method has become extremely popular [3][4][6]. Its use in certain flows are 
questionable however, due to its assumption of the snapshots being uncorrelated. This discussion is briefly 
explained in  [4]. 
 
C. Dynamic Mode Decomposition (DMD) 

 
The mathematics underlying the extraction of dynamic information from time-resolved snapshots of LES data is 
closely related to the idea underlying the Arnoldi algorithm. Starting point of the Arnoldi algorithm is a  
equence of vectors (spanning a Krylov subspace K) of the form  We assume jv  denotes each flow field. A 
sequence of N is writen as :  

 ][= 43211 N
N vvvvvV   (8) 

A linear mapping from one snapshot to another is assummed.  
 

 ][= 1
1

1
3

1
2

111 vAvAvAAvvV NN −  (9) 
 
This can be further more taken as constant over the data sequence as:  
 

 jj Avv =1+  (10) 
 
By the linear combination of available data fields, we have a standard Arlondi iteration problem.  
 

 SvAv N
i

N
i

11 −− ≈  (11) 
 
 where S is a companion matrix that simply shifts the snapshots 1 through 1−N  and approximates the last 
snapshot N  by a linear combination of previous 1−N  snapshots. Hence this procedure will result in the low 
dimensional system matrix “S“. We solve the “S“ matrix problem using eigenvalue analysis and obtain eigen 
values. It is known that eigen values of S, approximate some of the eigen values of the full system A. The 
associated eigenvectors of S provide the coefficients of the linear combination that is necessary to express the 
modal structure with in the snapshot basis. S matrix is calculated as follows:  
 

 N
H vQRS 1= −  (12) 

  
where HQ  is the complex conjugate transpose of Q  from the QR-decomposition of 1

1
−NV . 

 
III. EXPERIMENTS AND IMPLEMENTATION 

 
Here we discuss the Experimental and implementation details of POD and DMD on LES of subsonic jet data.  
A. Pre-Processing 
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We consider LES of low pressure and medium pressure as the data. Each pressure case has 2 fields: 1) Velocity 
and 2) Concentration. As part of experiments, snapshot matrix X  is constructed at first. Let VU ,  and Z  be 
the velocity components:  

 



































N
MMM

N

N
MMM

N

N
MMM

N

N

ZZZ

ZZZ

VVV

VVV

UUU

UUU

UUUUX

...

...

...

...

...

...

=][=

21

1
2

1
1
1

21

1
2

1
1

1

21

1
2

1
1
1

321







  (13) 

 Let Ps  be the scalar concentration component:  

 





















N
MMM

N

N

PsPsPs

PsPsPs

PsPsPsPsX
...

...

=][= 21

1
2
1

1
1

321 
  

B. Implementation of POD 
The fluctuating velocity matrix U  is calculated by substracting the mean velocities from the individual 
snapshots. Then the autocovariance matrix is computed as:  
 

 UUC T=  (15) 
 
The eigenvalue problem for the matrix reads as follows:  
 

 iii ACA λ=  (16) 
 
The eigenvectors are arranged according to the decreasing order of eigenvalues reflecting the energies in 
different POD modes. 

 
 0.=>>>> 4321 Nλλλλλ   (17) 

 
Using the ordered eigenvectors the POD modes are constructed. 
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C. Implementation of DMD 

 
Calculation of fluctuating velocity matrix is not needed. But the snapshot matrix is divided into two parts.  

  
 ][= 1321

1
1 −

−
n

n vvvvV   (19) 
  

 ][= 4322 n
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QR decomposition in economy mode is performed as :  
 

 ,0).(=],[ 1
1

−nVqrRQ  (21) 
 
Companion matrix S is calculated as :  

 .= 2
1 nHVQRS −  (22) 

 
The eigen value analysis is computed on S matrix  
 

 )(=],[ SeigDX  (23) 
 
The dynamic mode spectrum is computed as :  

 .)/(= tDlog jjj δλ  (24) 
 

tδ , is the time interval between the snapshots. The Dynamic modes can be computed as follows:  
 

 )(:,= 1 jXVDM N
ij

−  (25) 
 
where X is the original snapshot matrix. DMD contains details regarding the coherent structures and their 
temporal evolution as well. Since matrix A is needed is of no need at any point of implementation. [8]. 
 

IV. RESULTS AND DISCUSSIONS 

 

 

  

 

  

 

  

  

 

  

 

  

 

  
Figure  1: Comparison of first 4 POD modes (top) and DMD modes (bottom) for low pressure LES gas jet concentration field 
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Figure  2: Comparison of first 4 POD modes (top) and DMD modes (bottom) for medium pressure LES gas jet concentration field. 

 
The POD modes are the optimal decomposition for the flow and captures large scale structures or a large scale 
behaviour. Total kinetic energy is contained within the first few POD modes. Generally 95% of the total kinetic 
energy is used and the average flow field is described in the first n  POD modes. Dynamic modes represents the 
perturbation dynamics and captures characteristic pattern located near the shear layer. DMD spectrum 
quantatively describes the jet behaviour. Higher the dynamic modes higher the is the frequency. 
 
From the Figure 1 and Figure 2, it is observed from POD modes, that there is a formation of symmetric 
structures of Kelvin Helmholz instability. But from Dynamic modes, the Kelvin Helmholz instability is clearly 
visible. The second dynamic mode shows a characteristic pattern located near the shear layer, which represents 
the roll-up of the symmetric vortex sheet in Figure 1. The first and third mode depict small scale structures near 
the nozzle exit region. 
 
From the Figure 3 and Figure 4, it is observed that due to breaking up of potential core and transition of the 
turbulence and interactions between the opposite sides of the jet (shear-layer) the ladder structures are formed. 
We can also see the increase of ring type structures in the shear-layer of the jet with the increase in the pressure. 
 
POD and DMD methods can be utilised for analysing the LES data. The power of PODs fast convergence 
allows for a large scale structures to be isolated from the small scale structures in the turbulence. This would 
help in analysing the flow field in different ways. From the figures 1,2,3, and 4, POD and DMD methods are 
shown as a powerful numerical tools, for use in turbulent flows. The ability to maximize the kinetic energy of 
the flow with a miminal number of modes shows PODs strength in the analysis of the coherent flow structures 
and reduced order modelling.The DMD method has a clear advantages over POD, as it strives for a 
representation of the dominant flow features with in a temporal orthogonal framework, while POD is based on a 
spatial orthogonal framework. 
 
From the Figure 5 the eigenvalues of S represent the mapping between subsequent snapshots: unstable 
eigenvalues are given by a modulus greater than one (i.e., are located outside the unit disk) [8]; stable 
eigenvalues have a modulus less than one (i.e., can be found inside the unit disk) [8]. For applications in fluid 
dynamics, it is common to transform the eigenvalues of S using a logarithmic mapping, after which the unsta- 
ble (stable) eigenvalues have a positive (negative) real part [8], see Figure 5. The procedural steps for computing 
the dynamic mode decomposition are given in section 3. 
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Figure  3: Comparison of first 4 POD modes (top) and DMD modes (bottom) for low pressure LES gas jet velocity field. 

 

  

 

  

 

  

 

   

  

 

  

 

Figure 4: Comparison of first 4 POD modes (top) and DMD modes (bottom) for medium pressure LES gas jet velocity field. 
 

Therefore, this paper summerizes that POD and DMD methods will provide the experimentalist with solid tools,  
in quantifying important mechanisms in time resolved measurements of fluid dynamics. It is hoped that DMD 
and POD methods help in further understanding of fundamental fluid processes. 
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Figure 5: Eigenvalues of DMD for low pressure (left) and medium pressure (right) concentration field. 
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