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Abstract— In this paper a Particle Swarm Organization guided  faster version of public-key cryptography 
in wireless communication  has been proposed by minimizing total number of modular multiplication, so 
that  faster exponentiation can efficiently implemented which in turn progress the time requirements of 
the encryption / decryption of large number of plain or cipher text. Minimization of number of modular 
multiplication itself a NP-hard problem that means there is no polynomial time deterministic algorithm 
for this purpose. So, in this paper improved version of optimization algorithm using soft computing tools 
has been discussed to minimize the modular multiplication. This proposed SIFPKC technique begins with 
an initial population comprises of set of valid and complete set of particles. Then some operators like 
particles local best and global best positions along with velocity updating rules are used to generate 
feasible valid particle from the existing one. Among several exponents the best solution reached by 
SIFPKC is compared with some of the existing techniques. Extensive simulation shows competitive results 
for the proposed algorithm.  
 
Keywords- Swarm Intelligence based Faster Public-Key Cryptography (SIFPKC), Particle Swarm 
Optimization (PSO), cryptography, exponent, public-key, addition sequence, modular multiplication. 

I.  INTRODUCTION  

Various public-key cryptosystem (RSA, Diffie-Hellman Key Exchange, and DSA) [1, 2] make use of modular 
exponentiation for cryptographic reason. Any public-key cryptosystem comprises of a public key, private key and 
modulus, as given in equation (1). 

                                                                       Npc E mod                                                                  (1) 

Where plain text (p) is a positive integer in the range of [0, 1, 2, 3, N-1] in RSA technique. N is a result of 
multiplication of two very large prime number and E is a randomly chosen positive number which satisfies this 
equation. In this exponentiation large numbers of multiplications are requisite. In contemporary cryptographic 
technique E value could be greater than 128 bits [6]. For this explanation in asymmetric key cryptography 
encryption as well as decryption is very computationally costly. 

   This work introduces different swarm and evolutionary approaches to reduce number of multiplication 
needed to compute c. This above discussed exponent difficulty directly can be mapped directly in to an addition 
chain for computing exponent. As an alternative of multiplication, for a particular exponent value addition chain 
of sequence of integer can be generated using following properties: 

 Value of the first element of the sequence always 1. 
 Each consequence elements is generated by addition of two earlier elements. 
 Last element value is identical as the exponent E.       
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   For example if we require to discover p97 then one possible incompetent method to calculate (px , … ,xp) 
97 times. Following competent method for exponent calculation is through addition series 1-2-3-5-10-20-40-50-
90-95-97 that leads to the following scheme:  
 a1 = a → a2 = a1 a1 → a3 = a1 a2 → a5 = a2 a3 → a10 = a5 a5 → a20 = a10 a10 → a40 = a20 a20 → a50 = a10 a40 → a90 = a40 a50 
→ a95 = a5 a90 → a97 = a2 a95 

 Where sequence length is 11. So, only 11 multiplications are needed to calculate p97. But for the similar 
example one more addition sequence can be generated with length 10 i.e. 1-2-4-6-10-20-24-48-96-97 which  
leads to following sequence of computation:  
.    

a1 = a→ a2 = a1 a1 → a4 = a2 a2 → a6 = a4 a2  → a10  = a6 a4 → a20 = a10 a10 → a24 = a20 a4 → a48 = a24 a24 → a96 = a48 a48 
→ a97 = a96 a1. 
 
So, from the example it is seen that for a particular exponent value there may be several addition sequence of 
different length. 

 For sinking number of multiplication sequence having tiny length for a particular exponent always be 
selected which is an optimization problem. There are more than a few deterministic [8] and stochastic [5] and 
heuristics based techniques proposed for solving this optimization problem.     

 
This paper explored soft computing based stochastic method to improve its capabilities in this search space. 

Improved and efficient versions of stochastic method with some novel variation are proposed. 
 
The organization of this paper is as follows. Section II of the paper deals with problem statement.  Some of 

the existing techniques to handle this problem have been discussed in section III. Proposed SIFPKC based 
strategy discussed in section IV. Experimental results are given in section V. Analysis regarding various aspects 
of the technique and results have been presented in section VI. Conclusions with future scopes are drawn in 
section VII and that of references at end.  

II. PROBLEM STATEMENT 

The problem tackled in this paper is the optimization of addition sequence length X for a given exponent E. 
So, aim is to find out addition sequence with minimum length (l). An addition sequence X with length l is defined 
as a sequence of positive integers X= x1, x2, x1,…. xi,…, xl, with x1=1, x2 = 2 and xl = E, and xi-1 < xi < xi+1, where 
each xi  is obtained by adding two previous elements xi = xj + xk with j, k< i for i>2. Notice that j and k are not 
necessarily dissimilar. 

III. RELATED WORK 

A number of deterministic and probabilistic algorithms were proposed to find minimum addition chain.  Some 
of them are Binary [3], m-ary [4], adaptive m-ary, Power tree, The Factor Method, Window, Adaptive Window, 
Artificial Immune system , Genetic Algorithm [3, 4, 5, 9, 11, 12, 13]. Binary Method expands exponent to its 
binary version with length m. Then implementing a prearranged algorithm it is scanned from left to right or right 
to left and depending on the binary value of the scanned bit this algorithm computes fields squaring and 
multiplications function. 

 
This technique is enhanced by scanning more than one bit at a time. This new strategy is known as Window 

method [4] where k bits are scanned at a time. It is based on k-ary expansion of the exponent, where the bit of 
exponent are divided into k- bit words.  

 
The Adaptive Window strategy (different versions are [3, 4, 5, 8, 9, 10]) can fine-tune its technique according 

to the definite form of the given exponent. Here binary inputs exponent get divided into a series of variable 
having length zero and non zero digits, called window, which are get processed. This algorithm is valuable for 
exponents with bit length more than 128 bits.  

 
Despite the fact that most of the methods ate deterministic but a few probabilistic heuristics approaches were 

also proposed [11, 12, 13]. A simple GA based approach [11] with encoded addition chain as a chromosome 
was presented. This GA based method uses simple selection strategy and one point crossover technique and 
applied on a small set of exponents and obtained a competitive result oppose to earlier discussed proposed 
deterministic approach. One more algorithms i.e. Artificial Immune System (AIS) [13] where only feasible 
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addition chains are considered has also been proposed which works by emulating the Colonial Selection 
Principle where the unsurpassed individuals are cloned and these clones are also mutated.  

 
 
 

IV. PROPOSED SIFPKC STRATEGY 

PSO is a swarm intelligence based optimizaion technique. In PSO potential solutions to the problem are called 
paricles. PSO based addition sequence optimization has alrady been proposed in [14] has some shortcomings 
like if (2 * particlei-1 < exponent) and either (pBest’s length>i) or (gBest’s length>i) then using random (0,i-1) 
one random number. is generated which becomes the velocity value and this will be added to particlei-1 to obtain 
particlei. But this strategy is not useful to generate particle with better fitness. Because random (0,i-1) will 
always not generate maximum possible value to minimize the particle length. As for example if exponent = 81, 
using the existing PSO algorithm random (0,i-1) can generate 5, then particlei will be (25+5=30). Where particle 
length is 12 and fitness is 11 (length-1) (as illustrated in fig. 1).  

                                                                                     particlei-1   particlei 
1 2 3 5 10 15   25         30       60 75 80 81 

                                                        1      2     3     4       5       6         7                8             9      10      11    12 
Figure 1. Particle construction using random value with fitness=11 

 
But our proposed SIFPKC version tackles this problem using the operations.  
 
particlei= particlei-1 + particlei-2 

velocityi=i-2 
                                                                                               particlei-1   particlei 

1 2 3 5 10 15   25         40        80 81 
                                                                 1     2      3     4       5       6         7                8             9      10       

Figure 2. Particle construction using new rule with fitness=9 
 

          So, using SIFPKC algorithm value of particlei will be 40. Where particle length is 10 and fitness is 9 (as 
illustrated in fig. 2) which is better than former version [14]. This improved PSO also prevent the use of random 
(0,i-1) even if (2particlei-1 >exponent) and (particlei-1≠exponent) by using binary search mechanism for finding 
out most fittest element to add with particlei-1 with the aim of produce particle with better fitness. 
 

A. Encoding of paricle’s with Fitness Calculation 

Only valid feasible addition sequence gets encoded. Single dimension array of integer numbers represents an 
addition chain which is consider as a particle of PSO. For example if exponent =33 then particle can be 
represented as (1, 2, 3, 4, 8, 16, 32, 33) with fitness 7 (i.e. one less than particle’s length).                             
If (fitness (paricle) < pBest ) then pBest= fitness (paricle).Also find best fitness of neighbor and assign it to 
gBest. 
 

B. Initial population 

Initial population consists of collection of valid addition sequence. Where 1st and 2nd element of each particle 
will be 1 and 2 respectively. 
 
 
Initial_Population ( ) 
 
Input: Exponent  
Output: A valid set of particles  
Method: 
for j=1 to POPULATION-SIZE do 
      Set x j0 = 1 and x j1 = 2, Initialization of  0th & 1st position of jth particle. 
      Allocate x j2 = x j1 + rnd(x j0, x j1) where rnd() returns a random integer in the interval. 
      Generate a complete particlej using, 
      (Particlej, l) = Paricle_Construction (Particlej , exponent) 
end for 
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C. Particle’s Velocity 

A velocity value is an array of same length of the particle. It shows which elements were added to obtain the 
current element in the particle. Let particlei and velocity(particlei) are the ith element and its velocity 
respectively.  
particlei = particlei-1 + velocity(particlei). Consider the following fig. 3. 
 
                                                     Particle 

1 2 3 5 10 15 25 50 75 80 81 
                                                                    0     1     2      3      4        5       6       7        8       9      10 
                                                    Velocity 

0 0 0 1 3   3 4 6 6 3 0 
 

Figure 3. Particle with velocity 

 
If i=4 then particle4= particle3 + velocity(particle4) =5+5=10. 
 

D. Updation of Velocity 

The particle position is affected by the best position of the particle i.e. pBest and its neighborhood’s best 
experience i.e. gBest. After scanning value of each particle. Then at each step check the particle is affected by 
the rule in the velocity chain associated with (1) pBest or (2) gBest or (3) its own velocity. 
Algorithm of each particle construction is given below. 
 
Paricle_Construction ( ) 
 

for i=2 to length do 
  if (2particlei-1 <exponent) 
       if (prob(pBest)) then  /* Apply pBest velocity rule*/ 

       if (pBest’s length<i) then 
           particlei= particlei-1 + pBest (Velocity (particlei)) 
           velocityi = pBest(velocityi) 
        else  
           particlei= particlei-1 + particlei-2 
           velocityi=i-2 

       if (prob(gBest)) then  /* Apply gBest velocity rule*/ 
          if (gBest’s length<i) then 
            particlei= particlei-1 + gBest (Velocity(particlei)) 
            velocityi = gBest(velocityi) 
          else  
             particlei= particlei-1 + particlei-2 
             velocityi=i-2 
    else if (velocityi<i) then/* Apply its own velocity rule*/ 
              particlei= particlei + velocity(particlei) 
           else  
              particlei= particlei-1 + particlei-2 
              velocityi=i-2 

     else 
    if (particlei-1≠exponent) 
        diff= exponent- particlei-1 

/*Perform binary search in the range of (q=i-2 to 0) to get particle having value==diff */ 
             if (particleq==diff) then 
                 particlei= particlei-1 + particleq 
                 velocityi=q 
      else if (particleq>diff) then 
                 while (particleq>diff) do 
                            q=q-1;  
particlei= particlei-1 + particleq 

                   velocityi=q 
else if (particleq<diff) then 
                   while (particleq<diff) do 
q=q+1; 
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                    particlei= particlei-1 + particleq 
                    velocityi=q 

end for 
 
 

 
Complete algorithm of the proposed SIFPKC is given below. 
 
SIFPKC (P, i, exponent) 
Input: A partial particle = p1, p2, ..., pl= e, 
           where i represents the next position to be filled. 
Output: A feasible particle for a given exponent, with length l 
Method: 
 
Construct particles initial population of size N. 
repeat 
   for each particlei  do 
        Calculate fitness (particlei) 
              If (fitness (particlei) < pBest) then 
                      pBest= fitness (particlei) 
             Assign the best neighbor’s position to gBest. 
      Using velocity updation rules update the velocity and position of particlei 

  end for 
Repeat until termination criteria are not satisfied. 
   
 

V. EXPERIMENTTAL RESULTS 

Performance of proposed SIFPKC approach is compared with its previous version [11, 12, 14] and other 
deterministic and heuristic based [3, 4, 5, 9, 13] approaches with the aspire to (1) show that performance is 
competitive (or even improved) with those provided by other heuristic-based or deterministic approaches and 
(2) to solve even more complex instances of the problem. Complexity of the problem depends on the value of 
exponent. This section highlighted on the best solution reached so far i.e. quality and statistical analysis for 
reviewing consistency. Different parameters value that are used in proposed SIFPKC approach are obtained by a 
trial-and error method by favoring the best overall performance. 

A. Parameters used in proposed SIFPKC 

Number of particles=30 
Number of iterations=10000 
Neighborhood configuration=global 
Probability to apply the pBest’s velocities rules=0.5 
Probability to apply the pBest’s velocities rules=0.25 

The first set of experiments computes the total accumulated addition chains for a fixed set of 
exponents. An accumulated addition chain for a maximum value P, represents the sum of all addition chains 
obtained for all the exponents 1, 2, . . .,P as stated in following equation. An accumulated addition chain for a 
given exponent, represents the sum of all addition chains obtained for each number in the sequence defined by 
exponent stated in equation (2). 

                                          




P

i

ChainAddOptimalChainAdddAccumulate
1

____ 
 

A smaller value of Accumulated_Add_Chain represents better performance by the algorithm.  
In table I set of accumulated addition chains for all exponents less than: 512 (e ∈ [1, 512]), 1000 (e ∈ 

[1, 1000]), 2000 (e ∈ [1, 2000]), 2048 (e ∈ [1, 2048]) and 4096 (e ∈ [1, 4096]), is presented in order to compare 
the results with respect to earlier [14, 15] and proposed modified version of algorithm and some other heuristic 
[13] and deterministic [3, 4, 5, 9] algorithms that has been proposed so far.  

Table I represents the optimal value and the best results reached by proposed SIFPKC and existing 
heuristics and deterministic approaches. In table II statistical results obtained in 40 independent runs for all 
exponent set consider so far by the proposed SIFPKC are listed. Binary method, adaptive window method or 
other non-deterministic heuristics methods [3, 4, 5, 9, 11, 12, 13] are not be able to obtained shortest addition 
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chain for optimizing a given exponent. So a given exponent is hard to optimize using these strategies. Whereas 
proposed SIFPKC have the capabilities to address and solve this problem.   

 
  

TABLE I. COMPARISON OF BEST RESULTS OBTAINED BY THE FORMER VERSION OF  PSO [14 ],  AIS [13 ] , QUATERNARY, BINARY 

AND PROPOSED SIFPKC 

Exponent Optimal 
Proposed 
SIFPKC 

 
PSO [14] 

 

 
AIS [13] 

 
Quaternary Binary 

[1,512] 4924 4924 4924 4924 5226 5388 

[1,1000] 10808 10809 10813 10813 5603 5812 

[1,1024] 11115 11118 11120 11120 11862 12301 

[1,2000] 24063 24086 24095 24108 25923 26834 

[1,2048] 24731 24752 24765 24778 26664 27662 

[1,4096] 54425 55578 55609 56617 58678 61455 

 
In table II statistical results obtained in 40 independent runs for all exponent set consider so far by the 

proposed SIFPKC are listed. Binary method, adaptive window method or other non-deterministic heuristics 
methods are not be able to obtained shortest addition chain for optimizing a given exponent. So a given 
exponent is hard to optimize using these strategies. Whereas proposed SIFPKC have the capabilities to address 
and solve this problem.   
 
 
 

TABLE II. STATISTICAL RESULTS OF PROPOSED SIFPKC 
 

 
 

Table III shows average length of addition chain for proposed SIFPKC vs.  Binary, Quaternary 
technique where SIFPKC obtained shortest addition chain in exponent size compare to the Binary and 
Quaternary techniques.  
 
 

TABLE III. AVERAGE LENGTH OF ADDITION CHAIN FOR PROPOSED SIFPKC VS.  BINARY, QUATERNARY METHOD 

 

VI. ANALYSIS OF RESULTS 

From table I it is clearly observed that proposed modified PSO performs well in all the cases. In larger range of 
exponent value i.e. [1-1000], [1-2000], [1-2048], [1-4096] proposed SIFPKC outperforms than existing PSO 
[14]. This proposed SIFPKC performs better than AIS [13], Quaternary and Binary [3, 4, 5] techniques in the 
entire considered exponent range. Overall findings suggest that proposed SIFPKC performs outstandingly well 
among all the techniques and its results close to optimal values in most cases.  
 

Exponent Best Average Median Worst 

[1,512] 4924 4924 4924 4924 

[1,1000] 10809 10811.74 10812 10816 

[1,1024] 11118 11119.59 11120 11123 

[1,2000] 24086 24091.72 24092 24108 

[1,2048] 24752 24758.27 24758 24779 

[1,4096] 55578 55597.61 55598 55613 

Exponent size 
Proposed  
SIFPKC 

Binary Quaternary 

32 43 47 43 

64 81 95 87 

128 162 191 175 

256 326 383 351 

512 648 767 703 

1024 1291 1535 1407 
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VII. CONCLUSIONS AND FUTURE SCOPE 

In this paper several modifications of existing PSO techniques has been done for finding the optimal addition 
sequence for a given exponent. Proposed SIFPKC revised the velocity updating and particle formation method 
of existing technique in [14]. This proposed SIFPKC method is also compared with the existing heuristics and 
deterministic approaches [3, 4, 5, 11, 12, 13, 14]. SIFPKC outperformed all techniques mostly in larger 
exponent i.e. [   1-1000], [1-2000], [1-2048], [1-4096].  Furthermore, proposed SIFPKC approach able to 
generate optimal addition sequence on exponent where no other heuristic based approach has reported results in 
the specialized literature. 
 

Future scope of the proposed SIFPKC is to apply other soft computing tools in this problem domain and to 
design better velocity updating rules for proposed SIFPKC approach. Another future scope is to analyze the 
parameters required by these algorithms to reduce the number of evolutions without affecting the efficiency and 
test the algorithms with larger exponent (more than 160 bits). 
 

ACKNOWLEDGMENT 

The author expresses deep sense of gratitude to the DST, Govt. of India, for financial assistance through 
INSPIRE Fellowship leading for a PhD work under which this work has been carried out.  

 

REFERENCES 
[1] Atul Kahate, Cryptography and Network Security, 2003, Tata McGraw-Hill publishing Company Limited, Eighth reprint 2006. 
[2] ANSI X9.17 (Revised), National Standards for financial institution key management (wholesale), American Bankers Association, 

1986. 
[3] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of Algorithms, vol. 27, no. 1, pp. 129–146, April 1998. 
[4] D. E. Knuth, Art of Computer Programming, Seminumerical Algorithms. Addison-Wesley Professional, November 1997, vol. 2. 
[5] J. Bos and M. Coster. “Addition chains heuristics”. Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdan, The 

Netherlands., Springer-Verlag:1–5, 1998. 
[6] C. Kaya-Koc. “High-speed RSA implementation”. Technical report, RSA Laboratories, Redwood City, CA, 1994. 
[7] S. V.-D. Kruijssen. “Addition chains, efficient computing of powers. Bachelor Proyect, Amsterdam, 1:13–50, 2007. 
[8] N. Kunihiro and H. Yamamoto, “Window and extended window methods for addition chain and addition-subtraction chain,” IEICE 

Trans. Fundamentals, vol. E81-A(1), pp. 72–81, January 1998. 
[9] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson, “Fast exponentiation with precomputation,” In R. A. Rueppel, 

(editor) Advances in Cryptology —EUROCRYPT 92 Lecture Notes in Computer Science, vol. 658, pp. 200–207, 1992. 
[10] C. K. Koc, “Analysis of sliding window techniques for exponentiation,” Computer and Mathematics with Applications, vol. 30, no. 10, 

pp. 17–24, October 1995. 
[11] N. Cruz-Cortés, F. Rodríguez-Henríquez, R. Juárez-Morales, and C. A. Coello-Coello. “Finding optimal addition chains using a 

genetic algorithm approach”. Lecture Notes in Computer Science, Computer Science Section, Electrical Engineering Department, 
CINVESTAV IPN, 2:1–8, 2005. 

[12] L. G. Osorio-Hernández, E. Mezura-Montes, N. Cruz-Cortés, and F. Rodríguez-Henríquez. “An improved genetic algorithm able to 
find minimal length addition chains for small exponents”. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 
1–6. IEEE Press, 2009. 

[13] N. Cruz-Cort´es, F. Rodr´ıguez-Henr´ıquez, and C. A. C. Coello, “An Artificial Immune System Heuristic for Generating Short 
Addition Chains,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 1–24, February 2008. 

[14] Alejandro León-Javier, Nareli Cruz-Cortés, Marco A. Moreno-Armendáriz and Sandra Orantes-Jiménez ,“Finding Minimal Addition 
Chains with a Particle Swarm Optimization Algorithm” MICAI 2009: Advances in Artificial Intelligence Lecture Notes in Computer 
Science, Volume 5845/2009, 680-691, DOI: 10.1007/978-3-642-05258-3_6, 2009..  

 
 
 
 
 
 
 

Arindam Sarkar et al./ International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 3 No. 7 July 2012 273




