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Abstract— A method to implement elliptic curve public-key cryptosystem over Z(i) is discussed. The method is in 
fact the same as the technique that works on Galois fields but here works on Z(i). The curve under Z(i) generates 
more points as compared to the curve under Galois fields.  The security of the system is better due to more number of 
points on the curve. But there are some difficulties in the new system and through this paper; we try to discuss some 
of the pitfalls of the new system. 
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I. INTRODUCTION  

We live in an information age where information is treated as an asset that has a value like any other 
asset that we possess. So, we need to keep information secured from attacks and hackers. To keep information 
safe and secured it needs to be hidden from unauthorized access, protected from unauthorized modification and 
so on. Just a few decades from today, computer networks had been created and it has been creating a change in 
the use of information in the sense that information is distributed. It is now required to an authorized person to 
send and procure information from a far off place using computer networks. A new requirement has come up in 
the picture when the information is transmitted from one computer to another i.e., there should be a way to 
maintain its confidentiality on the way when it is transported from one computer to another in the network. So, 
the need for the public-key cryptography comes into picture. In public-key cryptography, there are two keys:- a 
private key and a public key. The private key is kept by the receiver. The public key is announced to the public. 
There are numerous public-key cryptography algorithms in the literature but many of these are found to be 
insecure and many are impractical to implement and use. As of now, only a few of those algorithms are 
considered both secure and practical. Of these secure and practical public-key algorithms, a few are suitable for 
encryption and still others are only useful for authentication. For example, RSA is presently used for both 
encryption and authentication. It is very slow in actual practice. Elliptic Curve Cryptography(ECC) is one of a 
few public-key algorithms that can be used in place of RSA. 
 

II. WHY ECC 
One of the main problems of RSA is its demand for a huge key length to meet the challenges in today’s 

security scenario. When you create an RSA key pair, you specify a key length in bits, as generally you would for 
other algorithms. Specifically, the key length of an RSA key specifies the number of bits in the modulus. But the 
million dollar question is “what RSA key length should we choose”. 

Experts say that an RSA key length of 1024 bits is sufficient for many medium-security purposes such as 
web site logins but for high-security applications such as online financial fund transfers or for data that need to 
remain confidential for more than a few years; you should use at least a 2048-bit key and it can be confirmed 
using table 1. To keep data confidential for more than the next two decades, RSA experts recommend a key size 
larger than 2048 bits [1].  A larger key increases the security of the encryption. But it has a serious problem in 
practice. With every doubling of the RSA key length, decryption is about 8 times slower. The size of ciphertext 
also become huge considerably. The key length also affects the speed of encryption, which is slower by a factor 
of 4. The comparisons in Table 2 demonstrate that smaller parameters can be used in elliptic curve cryptography 
(ECC) than with RSA system at a given security level. By a security level of k bits we mean that the best 
algorithm known for breaking the system takes approximately 2k steps. At the 132-bit ECC/1024-bit RSA 
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security level, an elliptic curve exponentiation for general curves over arbitrary prime fields is roughly 5 to 15 
times as fast as an RSA private key operation, depending on the platform and optimizations. 

 
TABLE 1. RSA KEY LENGTH OF SOME ORGANIZATIONS 

Organization RSA Key length
Google 1024 
Yahoo 1024 
eBay 2048 

Online SBI 2048 
Bank Asia 2048 

Vijaya Bank 2048 
 

TABLE 2. RSA AND ECC  KEY SIZES 

Security level 80 112 120 128 256 

ECC 132 185 237 256 512 

RSA  1024 2048 2560 3072 15360 
 
At the 256-bit ECC/3072-bit RSA security level the ratio has already increased to between 20 and 60, depending 
on optimizations. To secure a 256-bit AES key, ECC-521 can be expected to be on average 400 times faster than 
15,360-bit RSA [1]. The advantages that can be gained from smaller parameters include speed (faster 
computations) and smaller keys and certificates. 

 

III. ELLIPTIC CURVE 
Elliptic curves are a specific class of algebraic curves. The “Weierstrass form“ of an elliptic curve 

equation is [2],[4],[11]:- 
2 3 2

1 3 2 4 6:E y a xy a y x a x a x a+ + = + + +  

The constant 1 2 3 4 6, , , ,a a a a a  and the variables ,x y  can be complex, real, integers, polynomials, 
or even any other field elements. So, the mathematics of elliptic curve cryptography is so deep and complicated. 
But in practice we must specify which field, F, these constants and the variables, ,x y  belong to and 0Δ ≠ , 
where Δ  is the discriminant of E and is defined as follows [2]:- 

 
2 3 2
2 8 4 6 2 4 6

2
2 1 2

4 4 1 3
2

6 3 6

2 2 2
8 1 6 2 6 1 3 4 2 3 4

8 27 9

4
2

4

4

d d d d d d d

d a a

d a a a

d a a

d a a a a a a a a a a

Δ = − − − +

= +
= +

= +

= + − + −

 

We say that E is defined over K when the coefficients 1 2 3 4 6, , , ,a a a a a  (and of course, the variables x and y) 

of the equations come from the elements of the field K. So, we sometimes write ( )E K to emphasize that E is 
defined over K, and K is called the underlying field. If E is defined over K, then E is also defined over any 
extension field of K. 
 

A.  Elliptic Curve Over Galois fields 

 
Using the real numbers for cryptography has a lot of problems as it is very difficult to store them 

precisely in computer memory and predict how much storage will be needed for them. The difficulty can be 
solved by using Galois fields. In a Galois field, the number of elements is finite [16]. Since the number of 
elements if finite, we can find a unique representation for each of them, which allows us to store and handle the 
elements in an efficient way. Galois showed that the number of elements in a Galois field is always a positive 
prime power, and is denoted by ( )nGF p . Two special Galois fields are common in Elliptic Curve 

Cryptography. They are ( )GF p  when 1n =  and (2 )nGF when 2p = .  
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B.   Elliptic Curve Over Prime Galois Fields 

An elliptic group over a prime Galois Field uses a special elliptic curve of the form  
2 3mod mod( ) ( )y p x ax b p= + +  

 where , ( ),0a b GF p x p∈ ≤ ≤  and 3 216(4 27 ) mod 0a b p− + ≠ . The constants a and b are non-negative 

integers smaller than the prime p. The condition that  3 216(4 27 ) mod 0a b p− + ≠  implies that the curve has 
no “singular points” [3]. 

C. Group Law 

The mathematical property that makes elliptic curves useful for cryptography is simply that if we take 
two (distinct) points on the curve, then the chord joining them intercepts the curve in a third point (because we 
have a cubic curve). If we then reflect that point in the x-axis we get another point on the curve (since the curve 
is symmetric about the x-axis). This is the “sum” of the first two points. Together with this addition operation, 
the set of points ( )E K  forms an abelian group with 0 serving as its identity [4]. It is this group that is used in 
the construction of elliptic curve cryptographic systems. Algebraic formulae for the group law can be derived 
from the geometric description. 

 
Group law for 

2 3y x ax b= + +  over ( ).GF p  
(1) Identity: 0 0P P P+ = + =  for all ( ).P E K∈  
(2) Negative: If ( , ) ( )P x y E K= ∈ , then ( , ) ( , ) 0x y x y+ − = . The point ( , )x y− is denoted by -P 

and is called the negative of P; note that -P is indeed a point in ( )E K . Also, 0 0− = . 
 
(3) 

Point addition: Let 1 1( , ) ( )P x y E K= ∈ and 2 2( , ) ( )Q x y E K= ∈ where P Q≠ ± .Then 

3 3( , )P Q R x y+ = , where 2
3 1 2 3 1 3 1, ( )x x x y x x yλ λ= − − = − −  and  2 1

2 1

.y y

x x
λ −=

−
 

(4) Point doubling: Let 1 1( , ) ( )P x y E K= ∈ , where P P≠ ± . Then 3 32 ( , ),P R x y=   where 

2
3 1 3 1 3 12 , ( )x x y x x yλ λ= − = − −  and 1

2

1

3
.

2
x a

y
λ

+
=  

D.  Geometrical Interpretation of Group Law 

1.  Negative of a Point 
Let’s take a point ( , ).P x y=  The formula for finding is ( , )P P x y− − = −  as shown in the fig. 1. 

 

Fig.1.Negative of a Point Fig. 2.  Addition of two Points 
 

2.   Addition of two Points 
As mentioned above, we can define the addition of any two points on an elliptic curve by drawing a line 

between the two points and finding the point at which the line intersects the curve. The negative of the 
intersection point is defined as the “elliptic sum” by mathematicians as shown in fig. 2. 
 Mathematically we write: 
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R = P + Q. 
This “addition” satisfies all the usual algebraic properties that we associate with integers, provided we 

define a single additional point “the point at infinity”, which plays the role of 0 in the integers. In mathematical 
terms, we can define a finite additive abelian group on the points of the curve, with the zero being the point at 
infinity [4].  
 

 

 

Fig. 3. Doubling a Point Fig. 4. Some multiples of ( 1, 2).P = − −  

 
3.  Doubling of a Point 

If 1 1( , ),P x y= then the double of P, denoted by, 3 3( , )R x y= , is defined as follows. First draw the 
tangent line to the elliptic curve at P. This line intersects the elliptic curve in a second point. Then R is the 
reflection of this point in the x –axis. This is depicted in fig. 3. We can extend this idea to define 

3 ,P P P P+ + = and extending this idea further, we can define ...P P P k+ + + + times kP= , for any 
integer k, and hence define the order of P, being the smallest integer k such that 0kP = , where 0 denotes the 
point at infinity[4]. Fig. 4 shows some multiples of  ( 1, 2)P = − −    on the curve 2 3 5 .y x x= −  

To elucidate doubling of a point, consider the elliptic curve 
  2 3 4y x x= + +  

defined over (23).GF  This curve is represented by 23(1,4).E  We first note that 
3 24 27 4 432 436 22(mod 23) 0(mod 23).a b+ = + = ≡ ≠ The points in 23(1,4)E  are the following:- 

   
Table 3. Points on the curve 23(1,4)E  

0 (0,2) (0,21) (1,11) (1,12) (4,7) 

(4,16) (7,3) (7,20) (8,8) (8,15) (9,11) 

(9,12) (10,5) (10,18) (11,9) (11,14) (13,11) 

(13,12) (14,5) (14,18) (15,6) (15,17) (17,9) 

(17,14) (18,9) (18,14) (22,5) (22,19) 

 
Let (4,7) and (13,11).P Q= = Then 3 3( , )P Q R x y+ =  is computed as follows-

  1

2
3 3

11 7 4 4 9 ( mod 23) 4 18( mod 23) 72 mod 23 3
13 4 9
3 4 13 8 15(mod23), and 3(4 15) 7 40 6 (mod23)x y

λ −−= = = Χ = Χ = =
−

= − − = − ≡ = − − = − ≡
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Hence, (15,6).R =  
Again, let (4,7).P =  Then 2P P P= + is calculated as follows:- 

2
1

2
3 3

3 4 1 49 14 49 5 245 ( mod 23 ) 15
14

15 8 217 10(mod 23) and 15(4 10) 97 18(mod 23).
Hence, 2 (10,18).
x y

P

λ − 
 
 

Χ += = Χ = Χ = =

= − = ≡ = − = − ≡
=

 

E.   Elliptic Curve Over Binary  Galois Fields 

Let’s look at elliptic curves over (2 )nGF .That means our constants are either polynomial or normal 
basis numbers. It also means we cannot use the simplified version of equation, which we used for integer 
numbers, for our elliptic curve equations. 
 The mathematicians tell us that we need to use either this version: 

2 3 2y xy x ax b+ = + +  (1) 
or this version 2 3y y x ax b+ = + +  

 
(2) 
 

But, the mathematicians say that the second form above, (2), has the advantage that it can be computed 
quickly and has some very special properties. These properties make such curves unsuitable for cryptography. 

The curves of (1) are excellent for cryptographic applications. One must be careful in choosing the 
coefficients to get maximum benefit of security. A poor choice can create a curve that is easier for the 
cryptanalyst to attack. For equation (1) to be valid, b must never be 0. However, a can be 0. Here we give the 
group laws of the first form of the curve[3]. 

 
Group law for 

2 3 2y xy x ax b+ = + +  over (2 )nGF  

  
1. Identity: 0 0P P P+ = + =  for all .P E∈  
2.  Negative: If ( , ) ,P x y E= ∈  then ( , ) ( , ) 0.x y x x y+ + =  The point ( , )x x y+  is denoted by 

P−  and is called the negative of P; note that -P is indeed a point in E. Also, 0 0.− =  
3. Point addition: Let 1 1( , )P x y E= ∈ and 2 2( , )Q x y E= ∈  where P Q≠ ± .Then 

3 3( , )P Q R x y+ = , where 2
3 1 2x x x aλ λ= + + + +  and 3 1 3 3 1( )y x x x yλ= + + +  with 

2 1

2 1

.y y

x x
λ

+
=

+
 

4.  Point doubling: Let 1 1( , ) ,P x y E= ∈  where P P≠ − .  Then 3 32 ( , ),P R x y= =  where 

2
3x aλ λ= + +    and  2

3 1 3 3y x x xλ= + +  with 1
1

1

.y
x

x
λ = +    

Let us take an elliptic curve [9] 2 3 3 2 1y xy x g x+ = + +  over  3(2 )GF   under the irreducible 

polynomial 3( ) 1.f x x x= + +  Here the generator, g, satisfies the relation 3 1 0g g+ + =  or 3 1g g= + as 
the arithmetic is over (2).GF  The following table 4 shows the values of 'g s  and the points on the curve are  
given in table 5.  

TABLE 4: POSSIBLE VALUES OF  g’s 
    

0 000 g 010 3 1g g= +  011 5 2 1g g g= + +  111 

1 001 g2 100 4 2g g g= +  110 6 2 1g g= +  101 
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TABLE 5: POINTS ON THE GIVEN CURVE
2 3 3 2 1y xy x g x+ = + +  

    0  (0,1)  2( ,1)g  
2 6( , )g g  

3 2( , )g g  

3 5( , )g g  
5( ,1)g  

5 4( , )g g  
6( , )g g  

6 5( , )g g  

 
Let (0,1)P =  and 2( ,1).Q g= We have 3 3( , )P Q R x y+ = =  is computed as follows.   

3 3

2

2 2 3 5 5 5
1 2 1 3 3 1

5 2 4

1 1 0
0

0 0 0 and ( ) 0(0 ) 1

1 .

g

x x x a g g g y x x x y g g

g g g g

λ

λ λ λ

+= =
+

= + + + + = + + + + = = + + + = + + +

= + = + =
  

So, 5 4( , ) (111,110).R g g= =  

Again take 2
3 3( ,1). 2 ( , ).P g P P P R x y= = + =   

 3

2 2 5 3
2

2 6 3 3 6 2
3 1 3 3

4 9 6 4 2 2

4 2 5

1 1

and

( 1)
1 ( ) 1

g g g g g
g

x a g g g g y x x x

g g g g g g

g g g g

λ

λ λ λ

= + = + = + =

= + + = + + = = + +

= + + = + + +
= + = + + =

 

Therefore, 6 5
3 3( , ) ( , ) (101,111).R x y g g= = =  

  

F.  An important Theorem 

Let E be an elliptic curve defined over qF . Then ( )qE F is isomorphic to 1 2n nZ Z⊕  where n1 and n2 are 

uniquely determined positive integers such that n2 divides both n1 and 1q − . Note that 1 2# ( )qE F n n= . If 

2 1,n =  then ( )qE F is a cyclic group. If 2 1n > , then ( )qE F  is said to have rank 2. If n2 is a small integer 

(e.g., n = 2 ,3 or 4), we sometimes say that ( )qE F  is almost cyclic[4]. Since n2 divides n1 and q −1, one expects 

that ( )qE F  is cyclic or almost cyclic for most elliptic curves E over qF . 

G. Elliptic Curve Discrete Logarithm Problem 

Let E be an elliptic curve defined over a finite field and let, P be a point (called base point) on E of order 
n and k is a scalar. Calculating the point Q kP= from P is very easy and Q kP= can be computed by repeated 
point additions of P. However, it is very hard to determine the value of k knowing the two points: kP and .P  
This lead leads to the definition of Elliptic Curve Logarithm Problem (ECDLP) [3], which is defined as: “Given 
a base point P and the pointQ kP= , lying on the curve, find the value of scalar  k”. The integer k is called the 

elliptic curve discrete logarithm of Q to the base P, denoted as log .Pk Q=  
 

IV. THE SET ( )Z i   

We have studied in our high school classes that all complex numbers can be written as ,a ib+ where a 

and b are real numbers and 1i = − . If we only allow integer values for a and b we have the set ( ).Z i  This set 
is also called Gaussian Integers[15]. So, a Gaussian integer is a complex number whose real and imaginary part 
are both integers. The set ( )Z i forms a ring rather than a field, meaning that addition, subtraction, and 
multiplication are well-behaved, but inversion is not[15]. The reciprocal of an element ( )a Z i∈ in general need 
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not exist within the set ( )Z i . As a ring, the set ( )Z i  behaves similarly to the rational integers Z. The units 

(multiplicatively invertible elements) of the ( )Z i are { }( )  1,  Z i i+ = ± ± a multiplicative group. Every nonzero 

element of ( )Z i  factors uniquely (up to units) into prime in ( )Z i  and so on. Prime numbers in Z are called 
rational primes to distinguish them from prime numbers in the set ( )Z i .   

The norm of a Gaussian integer is the natural number defined as [15]:- 
( ) ( )( )2 2N x iy x y x iy x iy+ = + = + −  

The norm is multiplicative, i.e. 
( ) ( ) ( )N m * n N n * N m=  

The units of ( )Z i are therefore precisely those elements with norm 1, i.e. the elements 1,-1, i,-i. 
A Gaussian integer  a ib+ in ( )Z i  is Gaussian prime in ( )Z i  if and only if a ib+ is the product of 

a unit and one of the following[16]: 
 

(i) 1 i+ , 
(ii) a prime number p Z∈ , where 3(mod 4)p ≡ , or 
(iii) x iy+ , where 2 2x y p+ = , and p is a prime in Z with 1(mod 4)p ≡ . 

 
The necessary conditions can be stated as following: if a Gaussian integer a + bi is a Gaussian prime, 

then either its norm is a prime number, or its norm is a square of a prime number. 
We will assume that every Gaussian Integer whose norm is greater than 1 and less than n has a prime 

factorization. A Gaussian Integer with norm n is either prime or composite. If it is a prime, we have found a 
prime factorization. If it is composite, then we can factor it into two Gaussian Integers both of whose norms are 
less than n. Thus both of these Gaussian Integers will have prime factorizations, so the prime factorization of the 
Gaussian Integer in question will be the product of those two prime factorizations. 

The ring of ( )Z i  is a unique factorization domain, which means that, just like in the integers, every 
element of ( )Z i  has a unique decomposition into prime elements [15]. Since the norm is a multiplicative map, 

an element with prime norm must be prime. Thus x iy±  are both prime. So if ( )( ) ,p x iy x iy= + −  by 

unique factorization this means p cannot be a prime element of ( )Z i . In this case, the prime p is said to split in 

( ).Z i We note also that if p splits in ( )Z i , then the minimal polynomial of 2,    1,i x + factors  modulo p. For 

example, ( )( )2  1    2   2  modulo 5.x x x+ = + −  

A. Elliptic Curve Over ( )Z i  

In this version of elliptic curves, the elliptic curve points will be elements of ( )Z i  and therefore will 

have complex coordinates. As an example, consider the elliptic curve 2 3  y x x= + over 

( ) ( ){ }:  ,  3
p

F i a ib a b GF= + ∈  of ( )Z i . It has 16 points. The points are given in table 6 below. 
 

TABLE 6: POINTS ON 
2 3  y x x= + OVER  ( ) ( ){ }:  ,  3 .

p
F i a ib a b GF= + ∈  

x y Point x y Point 

0 0 (0, 0) 1+2i ±i (1+2i, i),(2i, 2i) 

i 0 (i, 0) 2 ±1 (2, 1),(2, 2) 

2i 0 (2i, 0) 2+ i ±1 (i, 1),(i, 2) 

1 ±i (1,i),(1, 2i) 2+2i ±1 (2+2i, 1),(2i, 2) 

1+i ±i (i, i),(i, 2i)   0 

 
To show the idea and the distribution of points, a full enumeration of curve points has been done. The following 
fig.5.  shows the complex points on the complex plane. The x and y coordinates are represented separately as 
each coordinate is complex. The x and y coordinate fall within the planar square limited by 0, p, ip and (1 + i)p. 
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The prime p can be a Gaussian prime of the form p a ib= + in ( )Z i and if so, the real part of x and y falls 
between a and – b. The imaginary part falls between 0 and a + b.  

  
 

Fig. 5.  Point on 
2 3  y x x= + over ( ) ( ){ }:  ,  3 .

p
F i a ib a b GF= + ∈  

 
If the same curve is implemented under (3)GF , then it has 4 points as shown below in table 7. 
  

TABLE 7. POINTS ON 
2 3

(3)  OVER GFy x x= +   

x y point 

0 0 (0, 0) 

2 ±1 (2, 1),(2,2) 

  0 

 

B.  Point counting 

Let E be an elliptic curve defined over qF . The number of points in ( )qE F , denoted 

by or# ( ) ( )q qE F E F , is called the order of E over qF . Then Hasse’s theorem says that the order of ( )qE F  

satisfies the inequality [4]   

1 2 ( ) 1 2 .qq q E F q q+ − ≤ ≤ + +  

An alternate formulation of Hasse’s theorem can be stated as:- if E is defined over qF , then 

# ( ) 1qE F q t= + −  where | | 2t q≤ ; t is called the trace of E over qF . Since 2 q  is small relative to q, we 

have ( )qE F q≈ . 

There are several methods presently known that can quickly determine the order of ( )qE F . 
Unfortunately none of them is effective once q is very large. An alternative approach is to use the order of 
certain points in ( ).qE F Since ( )qE F is a group, and then the order of any point in ( )qE F  must 

divide ( )qE F , by Lagrange’s theorem. In Hasse’s theorem, we know that ( )qE F is bounded in an interval of 

length 4 q . If we can find a point in ( )qE F of order 4m q> , then there will be only one multiple of m 

lying in that interval, which must be ( ) .qE F  For example, let E be the elliptic curve 2 3 10 21y x x= − +  

over (557).GF  It can be shown that the point (2, 3) has order 189.  Hasse’s theorem says that 
 

557

557

557 1 2 557 ( ) 557 1 2 557

i.e, 511 ( ) 605

E F

E F

+ − ≤ ≤ + +

≤ ≤  

But the only multiple of 189 in this interval is 3 as 3 189 576.Χ =  Hence, 557( ) 567E F = . 
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Now let us take this theorem to elliptic curve over ( )Z i . In this case, our field is 

( ) { :  ,  with p 3 mod 4.
p p

F i a ib a b F= + ∈ =  Now q is the norm of the ( )x Z i∈ i.e, Gaussian integer. In other 

words, this field is isomorphic to 2p
F . So, the Hasse’s  theorem says 

2 2

1 2 ( ) 1 2

9 1 2 9 ( ( )) 9 1 2 9 3 9

10 6 ( ( )) 10 6

4 ( ( )) 16.

q

p

p

p

q q E F q q

E F i q p

E F i

E F i

+ − ≤ ≤ + +

 + − ≤ ≤ + + = = = 

− ≤ ≤ +

≤ ≤


 

The actual number of points is 16 which is again within the bound of Hasse’s theorem. 
 

C.  Elliptic Curve Arithmetic 

The arithmetic for adding two points can be done in the same way we do over .qF  Similar is the case for 
each of negation and doubling of a point. 

Multiplication of a point by the imaginary number i transform a point (x, y) to the point (–x, iy). 
Depending on the equation of the elliptic curve, it may be a new point either on the curve itself or not on the 
original curve but to a new curve.  As an example, consider the elliptic curve  

2 3

1 : .E y x x= +  
It has complex multiplication  

( ) ( ), ,f x y x iy= −  

because ( )2 2 3 .iy y x x= − = − −  It is easy to see that ( ),f x y  is indeed a point on the curve 1.E  In this type of 
elliptic curve, multiplication of a point by i is still a point on the same curve. 

Again consider the elliptic curve equation 
2 3

2 :       E y x ax b= + +  
If all the points on this curve are multiplied by i, this generates all the points that are on another curve 

whose equation is 2 3      .y x ax b= + −  Thus, depending on curves, multiplication by i introduces a shift that 
transforms all the points of the curve to another one. This is one the problems of elliptic curve cryptography 
over  ( ).Z i  
 

D.  Supersingular Curves  

Elliptic curves defined over a finite field are of two types. Most are what are called ordinary or non-
supersingular curves, but a small number are supersingular. As mentioned above, the order or cardinality of an 
elliptic curve is ( ) 1 ,qE F q t= + − where 2 .t q≤  Let p be the characteristic of qF . An elliptic curve E 

defined over qF  is supersingular if p divides t. If p does not divide t, then E is non-supersingular [4]. The 

problem with the supersingular elliptic curve is that the ECDLP in an elliptic curve E defined over a field qF  

can be reduced to the ordinary DLP in the multiplicative group of some finite extension field of qF k for 

some 1k ≥ . It follows that the reduction of ECDLP to ordinary DLP can be solved in a sub-exponential time, 
thus, compromising security of the system. To ensure that the reduction does not apply to a particular curve, one 
need to make sure that n, the order of the point P, does that divide 1kq − for small k. 

In the case of ( )Z i , p is replaced by its norm in the condition. Using a Weil pairing on E, there is a 
polynomial time reduction of ECDLP to DLP. These curves are exposed to the MOV attack that runs in sub 
exponential time. Although the computations of the attack are longer with ( )Z i , those curves should be 
avoided. 
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E. Implementation  Speed  and  Complexity 

The number of digits involved in arithmetic over the prime ( )p Z i∈  is similar to the number of digits 

handled in the arithmetic on the same elliptic curve over a field of the order of 2.p  However; complex 
arithmetic enables multipliers to compute the real and imaginary parts of the output independently. The 
multiplication of ( )a ib+  and ( )c id+  gives (ac - bd) as the real part and (ad + bc) as the imaginary part of 
the operation. Both the real and imaginary parts can be calculated independently. This leads to quicker 
operations. The hardware implementation of the arithmetic will use less electronic components because the 
required multipliers work on inputs that are on the order of p rather than 2.p  This implies that the multipliers 
used in case of ( )Z i  will handle digits that is roughly half the number of digits needed to handle the larger 

integers on the order of 2.p  As an example, the complexity of a typical multiplication is 20( )n where n is the 

number of digits in each of the two inputs. For rational primes on the order of 2p  that have n digits the 

complexity is 20( )n while the equivalent Gaussian integers with real and imaginary parts on the order of p each 

will have a complexity 
2 2

.
2 4
n n

O O
   =   

   
 If two multipliers are run in parallel to calculate the real and 

imaginary parts the total time complexity remains 
2

,
4
n

O
 
 
 

 which is 
1
4

of the time needed in the case of 

rational integer.  
But an elliptic curve defined over ( )Z i  requires double the space and bandwidth as used by elliptic 

curve over Galois fields of the same prime p because the points on elliptic curve over ( )Z i are Gaussian 
integers. Point compression techniques [4] can be used to decrease the memory space requirements sacrificing 
speed. 
 

F.  Security Issues 

An elliptic curve defined over ( )Z i  results in an elliptic curve group that is much larger than the 
group of the same curve over Galois Fields. The security is greatly improved as the order of the curve becomes 
squared. For systems with limited computational capacity like smart cards, a very high level of security can be 
achieved using elliptic curve cryptography over ( )Z i .  
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