
Comparison of Software Test Data for
Automatic Path Coverage Using Genetic

Algorithm
Premal B. Nirpal and K. V. Kale

Department of CS & IT, Dr. B. A. M. University, Aurangabad, India
e-mail: premal.nirpal@gmail.com

ABSTRACT
This paper discusses genetic algorithms that can automatically generate test cases to test selected path.
This algorithm takes a selected path as a target and executes sequences of operators iteratively for test
cases to evolve. The evolved test case can lead the program execution to achieve the target path. An
automatic path-oriented test data generation is not only a crucial problem but also a hot issue in the
research area of software testing today.

KEYWORDS
Software Testing, Test case generation, Path Coverage, Genetic Algorithms.

1. Introduction

Software being utilized in various situations and software quality becomes more important than ever. Being main
means of software quality assurance, software testing is very laborious and costly due to the act that it is accounts
for approximately 50 percent of the elapsed time and more than 50 percent of the total cost in software
development [4, 5].
Automatic test data generation is a key problem in software testing and its implementation can not only
significantly improve the effectiveness and efficiency but also reduce the high cost of software testing[3, 4]. In
particular, it is notable that various structural test data generation problem can be transformed into a path oriented
test data generation problem. Moreover, path testing strategy can detect almost 65 ercent of errors in program
under test [8].
Although path-oriented test data generation is an undesirable problem [6], researchers still attempt to develop
various methods and have made some progress. These means can be classified into two types: static methods and
dynamic methods. Static methods include domain reduction [10, 11] and symbolic execution [12] etc. These
means suffer from a number of problems when they handle indefinite array, loops, pointer references and
procedure calls [13].
Dynamic methods include random testing, local search approach [14], goal-oriented approach [15], chaining
approach [16] and evolutionary approach [13, 14-16]. As values of input variables are determined when programs
execute, dynamic test data generation can avoid those problems with that static methods are confronted. Being a
robust search method in complex spaces, genetic algorithm was applied to test data generation in 1992 [14] and
evolutionary approach has been a burgeoning interest since then. Related works [17], [16] and [18] indicate that
GA-based test data generation outperforms other dynamic approaches e.g. random testing and local search.
The structure of this paper is organized as follows. Section 2 gives a brief introduction to Genetic Algorithms.
Section 3 Basic process flow of path-oriented test data generation using GA. Section 4 describes experimental
settings and gives experimental results based on a triangle classification program. Finally, section 5 summarizes
the paper with conclusions and directions for future work.

2. Genetic Algorithms

Genetic Algorithms begins with a set of initial individuals as the first generation, which are sampled at random
from the problem domain. The algorithms are developed to perform a series of operations that transform the
present generation into a new, fitter generation [22].
Each individual in each generation is evaluated with a fitness function. Based on the evaluation, the evolution of
the individuals may approach the optimal solution.
The most common operations of genetic algorithms are designed to produce efficient solution for the target
problem [15]. These primary operations include:

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 42

a) Reproduction: This operation assigns the reproduction probability to each individual based on the output of
the fitness function. The individual with a higher ranking is given a greater probability for reproduction. As a
result, the fitter individuals are allowed a better survival chance from one generation to the next.
b) Crossover: This operation is used to produce the descendants that make up the next generation. This operation
involves the following crossbreeding procedures:
 i) Randomly select two individuals as a couple from the parent generation.

ii) Randomly select a position of the genes, corresponding to this couple, as the crossover point. Thus,
each gene is divided into two parts.

 iii) Exchange the first parts of both genes corresponding to the couple.
 iv) Add the two resulted individuals to the next generation.
c) Mutation: This operation picks a gene at random and changing its state according to the mutation probability.
The purpose of the mutation operation is to maintain the diversity in a generation to prevent premature
convergence to a local optimal solution. The mutation probability is given intuitively since there is no definite
way to determine the mutation probability [22].
Upon completion of crossover processing and mutation operations, there will be an original parent population and
a new offspring population. A fitness function should be devised to determine which of these parents and
offspring’s can be survived into the next generation. After performing the fitness function, these parents, and
offspring’s are filtered and a new generation is formed. These operations are iterated until the expected goal is
achieved. Genetic algorithms guarantee high probability of improving the quality of the individuals over several
generations according to the Schema Theorem [5].

3. Basic process flow of path-oriented test data generation using genetic algorithm

Figure 1. Basic process flow

A selected target path is the goal for GA to achieve, and an input vector X (a test data) is regarded as an
individual. To generate path-oriented test data for the program under test using GA, there are five steps and
Figure 1 depicts the basic process flow [6, 7].
(1) Control flow graph construction. Control flow graph of the program under test may be constructed manually
or automatically with related tools. It helps testers to select representative target paths.

Instrumented program execution

Satisfied or
Exceeded Max

generation

Control flow graph construction
& target path selection

Fitness function construction
& program instrumentation

Original test data generation

Get suitable test data or not

GA execution

Stop

Y

N

Start

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 43

(2) Target path selection. In general, a program under test has too many paths to test completely. Thus, testers
have to select meaningful paths as target paths.
(3) Fitness function construction. In order to evaluate distance between the executed path and the target path,
fitness function has to be constructed.
(4) Program instrumentation. This means inserting probes at the beginning of every block of source code to
monitor program execution and collect related information (e.g. fitness values of individuals).
(5) Test data generation and the instrumented program execution. Original test data are chosen from their
domain at random and GA generates new test data in order to achieve the target path. Finally, suitable test data
that executes along the target paths may be generated or no suitable test data may be found because of exceeding
max generation [22].

No Predicate Distance if path taken is different

1 A=B ABS(A-B)

2 A≠B K

3 A<B (A-B)+K

4 A≤B (A-B)

5 A>B (B-A)+K

6 A≥B (B-A)

7 X OR Y MIN(Distance(X), Distance(Y))

8 X AND Y (Distance(X) + Distance(Y)

Table 1: Korel’s distance function

4. Experimental studies
Triangle classification program
Triangle classification program has been widely used in the research area of software testing [22, 24]. It aims to
determine if three input edges can form a triangle and so what type of triangle can be formed by them. Figure 2
gives source code of the program.

TraversedPath= [];
 TriangleType='Not a Triangle';
 if ((SideA+SideB>SideC)&&(SideB+SideC>SideA)&&(SideC+SideA>SideB))
 TraversedPath =[TraversedPath 'a'];
 if ((SideA~=SideB)&&(SideB~=SideC)&&(SideC~=SideA))
 TraversedPath=[TraversedPath 'e'];
 TriangleType='Scalene';
 else
 TraversedPath =[TraversedPath 'b'];
 if (((SideA==SideB)&&(SideB~=SideC))||((SideB==SideC)&& ...

(SideC~=SideA))||((SideC==SideA)&&(SideA~=SideB)))
 TraversedPath =[TraversedPath 'f'];
 TriangleType='Isosceles';
 else
 TraversedPath=[TraversedPath 'c'];
 TriangleType='Equilateral';
 end
 end
 else
 TraversedPath =[TraversedPath 'd'];
 end

Figure 2. An example program

1. Control flow graph construction: The tested program (Fig. 2 Triangle classification program) determines
what kind of triangle can be formed by any three input lengths. The programs control flow diagram, which
contains four paths, is shown in fig. 3.

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 44

Figure 3. Control flow graph of the example Program

2. Target path selection:
Figure 3 is control flow graph of the triangle classification program, which consists of four paths:

 Path l: <d> //Not-a-triangle
 Path 2: <ae> //Scalene
 Path 3: <abf> //Isosceles
 Path 4: <abc> //Equilateral

According to probability theory, the path <abc> is the most difficult path to be covered in path testing. Therefore,
the path <abc> is selected as the target path.
3. Test case generation and execution:

Experimental settings
Settings of standard genetic algorithm (SGA) are as following:
(1) Coding: binary string
(2) Length of chromosome: 3Nbits (N=8, 10……..,15), and each edge are range from 1 to 2N
(3) Population size: from 1 to 1000
(4) Stochastic universal sampling
(5) Two-point crossover probability = 0.9
(6) Mutation probability = 0.01
(7) Generation gap = 0.96
(8) Max generation = 1000

Table 2 shows that the average number of test cases on the path of each generation. In this experiment we have
used Genetic Algorithm for 100 generations with n=15, initial population with 34000 test cases. The size of the
chromosome is 36. Mutation rate is 0.01. Selection rate 0.5. Figure 2 shows the average number of test cases on
the path of each generation.

 <abc> <d> <ae> <abf> time total test
cases

Generation Equilateral Not a
Triangle

Scalene Isosceles

1 157 16918 12100 4825 2.7275 34000
2 74 9173 5450 2303 1.6894 17000
3 79 9438 5253 2230 1.5997 17000
4 77 9831 4960 2132 1.8760 17000
5 86 9960 4879 2075 1.9791 17000
6 95 9988 4821 2096 2.3626 17000
7 87 10240 4626 2047 1.4046 17000
8 76 10527 4416 1981 1.4381 17000
9 81 10607 4355 1957 1.6466 17000
10 67 10636 4395 1902 1.8333 17000

Table 2. Average number of test cases on the path of Fig . 3 of each generation

S

1

2

4

6

7

3

5

E

a

b

d

e

f
c

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 45

GA Graph

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

Generations

T
es

t
C

as
es

Equilateral

Not a Triangle

Scalene

Isosceles

Fig. 4 Average number of test cases on the path of Fig . 3 of each generation

Using Yong Chen [28] approach, Table 3 shows that the average number of test cases on the path of each
generation. In this experiment we have used GA for 100 generations with n=15, initial population with 34000 test
cases. The size of the chromosome is 36. Mutation rate is 0.01. Selection rate 0.5. Figure 3 shows the average
number of test cases on the path of each generation.

 <abc> <d> <ae> <abf> time total test
cases

Generation Equilateral Not a
Triangle

Scalene Isosceles

1 0 17181 16805 14 9.2291 34000
2 0 9169 7818 13 5.1290 17000
3 0 9301 7689 10 5.2338 17000
4 0 9545 7439 16 5.6058 17000
5 0 9863 7121 16 5.6808 17000
6 0 9848 7136 16 6.2996 17000
7 0 10024 6962 14 5.9840 17000
8 0 10159 6832 9 6.0668 17000
9 0 10335 6653 12 6.2867 17000
10 0 10620 6361 19 6.1355 17000

Table 3. Average number of test cases on the path of Fig . 3 of each generation

GA Graph

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

Generation

T
es

t
C

as
es

Equilateral

Not a Triangle

Scalene

Isosceles

Fig. 5 Average number of test cases on the path of Fig . 3 of each generation

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 46

From the experimental results in Figure 4 and Figure 5, it is found that our genetic algorithms based test data
always outperforms Young Chen based test data. With increasing length of chromosome, Young Chen based
approach requires more and more number of test data and time to achieve target path. Figure 4 and Figure 5
shows average number of test data and average time.

5. Conclusion

In this paper, the genetic algorithms are used to automatically generate test cases for path testing. Using a triangle
classification program as an example, experiment results show that Our Genetic Algorithm based test data can
more effectively and efficiently than Young Chen method does.
The quality of test cases produces by genetic algorithms is higher than the quality of test cases produced by
random way because the algorithm can direct the generation of test cases to the desirable range fast. This paper
shows that genetic algorithms are useful in reducing the time required for lengthy testing meaningfully by
generating test cases for path testing. Furthermore, we build our Genetic Algorithm for structural testing for
reduce execution time & generate more suitable test cases.

Acknowledgment

The authors wish to acknowledge UGC for the award of Research Fellowship under Fellowship in Sciences to
Meritorious Students (RFSMS) scheme for carrying out this research.

References

[1] Roger S. Pressman: “Software Engineering”, A Practitioner’s Approach 5th Edition, McGraw Hill, 1997.

[2] B. Beizer, Software Testing Techniques 2nd Edition, International Thomson Computer Press, 1990.

[3] Srinivasan Desikan, Gopalaswamy Ramesh “Software Testing Principles & Practices” PEARSON Education, 2006.

[4] G. J. Myers, The Art of Software Testing.2nd ed.: John Wiley & Sons Inc, 2004.
[5] B. Antonia, "Software Testing Research: Achievements, Challenges, Dreams," in 2007 Future of Software Engineering: IEEE

Computer Society, 2007.

[6] Chen Yong and Zhong Yong, "Automatic Path-Oriented Test Data Generation Using a Multi-population Genetic algorithm,"in
Proceedings of Fourth International Conference on Natural Computation (ICNC '08), Jinan, China, 2008.

[7] Chen Yong, Zhong Yong, Bao Shengli, and He Famei, "Structural Test Data Generation Using Immune Genetic Algorithm," in The
International Conference 2007 on Information Computing and Automation, Chengdu, China, 2008.

[8] B. W. Kernighan and P. J. Plauger, The Elements of Programming Style: McGraw-Hill, Inc. New York, NY, USA, 1982.

[9] E. J. Weyuker, "The applicability of program schema results to programs," International Journal of Parallel Programming, vol. 8,
1979,pp. 387-403.

[10] T. Y. Chen, T. H. Tse, and Z. Zhiquan, "Semi-proving: an integrated method based on global symbolic evaluation and metamorphic
testing," in Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis Roma, Italy: ACM,
2002.

[11] S. Nguyen Tran and D. Yves, "Consistency techniques for interprocedural test data generation," ACM SIGSOFT Software
Engineering Notes, vol. 28, 2003, pp. 108-117.

[12] C. K. James, "A new approach to program testing," in Proceedings of the international conference on Reliable software Los Angeles,
California: ACM, 1975.

[13] G. M. C C Michael, M Schatz "Generating software test data by evolution," IEEE Transactions on Software Engineering, vol. 27,
2001, pp. 1085-1110.

[14] B. Korel, "Automated software test data generation," IEEE Transactions on Software Engineering, vol. 16, 1990,pp. 870- 879.
[15] B. Korel, "Dynamic method for software test data generation," Software Testing, Verification & Reliability, vol. 2, 1992, pp. 203-213.
[16] J. Wegener, B. Kerstin, and P. Hartmut, "Automatic Test Data Generation For Structural Testing Of Embedded Software Systems By

Evolutionary Testing," in Proceedings of the Genetic and Evolutionary Computation Conference: Morgan Kaufmann Publishers Inc.,
2002.

[17] W. Joachim, Andr, Baresel, and S. Harmen, "Suitability of Evolutionary Algorithms for Evolutionary Testing," in Proceedings of the
26th International Computer Software and Applications Conference on Prolonging Software Life: Development and Redevelopment:
IEEE Computer Society, 2002.

[18] Christoph C. Michael, Gary McGraw and Michael A. Schatz, “Generating Software Test Data by Evolution”, IEEE Transactions On
Software Engineering, Vol. 27, No. 12, December 2001.

[19] Roy P Pargas, Mary Jean Harrold, Robert R Peck, “ Test Data Generation Using Genetic Algorithms”, Journal of Software Testing,
Verification and Reliability, 1999,

[20] Alan C. Schultz, John J. Grefenstette, aid Kenneth A. De Jong, “Test And Evaluation by Genetic Algorithms”, IEEE, 1993.

[21] Joachim Wegener, Kerstin Buhr, Hartmut Pohlheim, “Automatic Test Data Generation for Structural Testing of Embedded Software
Systems by Evolutionary Testing”.

[22] Yong Chen1, Yong Zhong, Tingting Shi1 and Jingyong Liu, “Comparison of Two Fitness Functions for GA-based Path-Oriented Test
Data Generation”, 2009 Fifth International Conference on Natural Computation, IEEE, 2009.

[23] Richard A. DeMillo and A. Jefferson Offutt, “Constraint-Based Automatic Test Data Generation”, 1EEE Transactions On Software
Engineering, Vol. 17, No. 9, September 1991.

[24] Jin-Cherng Lin and Pu-Lin Yeh, “Using Genetic Algorithms for Test Case Generation in Path Testing”, IEEE, 2000.

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 47

[25] Debasis Mohapatra, Prachet Bhuyan and Durga P. Mohapatra, “Automated Test Case Generation and Its Optimization for Path Testing
Using Genetic Algorithm and Sampling”, WASE International Conference on Information Engineering, 2009.

[26] Donald J. Berndt and Alison Watkins, “Investigating the Performance of Genetic Algorithm-Based Software Test Case Generation”,
Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering (HASE’04) 2004.

[27] Xiajiong Shen, Qian Wang, Peipei Wang and Bo Zhou, “Automatic Generation of Test Case based on GATS Algorithm”, AA04Z148,
2007.

[28] Yong Chen1, Yong Zhong, Tingting Shi1, Jingyong Liu, “Comparison of Two Fitness Functions for GA-based Path-Oriented Test
Data Generation” IEEE 2009 Fifth International Conference on Natural Computation

Authors Profile

Mr. Premal B. Nirpal
UGC Research Fellow,
Department of Computer Science and Information Technology,
Dr. B. A. M. University, Aurangabad.

Dr. K. V. Kale
Professor and Head,
Department of Computer Science and Information Technology,
Dr. B. A. M. University, Aurangabad.

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 48

	Comparison of Software Test Data forAutomatic Path Coverage Using GeneticAlgorithm
	ABSTRACT
	KEYWORDS
	1. Introduction
	2. Genetic Algorithms
	3. Basic process flow of path-oriented test data generation using genetic algorithm
	4. Experimental studies
	5. Conclusion
	Acknowledgment
	References
	Authors Profile

