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ABSTRACT 
This paper discusses genetic algorithms that can automatically generate test cases to test selected path. 
This algorithm takes a selected path as a target and executes sequences of operators iteratively for test 
cases to evolve. The evolved test case can lead the program execution to achieve the target path. An 
automatic path-oriented test data generation is not only a crucial problem but also a hot issue in the 
research area of software testing today.  
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1. Introduction 
 
Software being utilized in various situations and software quality becomes more important than ever. Being main 
means of software quality assurance, software testing is very laborious and costly due to the act that it is accounts 
for approximately 50 percent of the elapsed time and more than 50 percent of the total cost in software 
development [4, 5]. 
Automatic test data generation is a key problem in software testing and its implementation can not only 
significantly improve the effectiveness and efficiency but also reduce the high cost of software testing[3, 4]. In 
particular, it is notable that various structural test data generation problem can be transformed into a path oriented 
test data generation problem. Moreover, path testing strategy can detect almost 65 ercent of errors in program 
under test [8]. 
Although path-oriented test data generation is an undesirable problem [6], researchers still attempt to develop 
various methods and have made some progress. These means can be classified into two types: static methods and 
dynamic methods. Static methods include domain reduction [10, 11] and symbolic execution [12] etc. These 
means suffer from a number of problems when they handle indefinite array, loops, pointer references and 
procedure calls [13].  
Dynamic methods include random testing, local search approach [14], goal-oriented approach [15], chaining 
approach [16] and evolutionary approach [13, 14-16]. As values of input variables are determined when programs 
execute, dynamic test data generation can avoid those problems with that static methods are confronted. Being a 
robust search method in complex spaces, genetic algorithm was applied to test data generation in 1992 [14] and 
evolutionary approach has been a burgeoning interest since then. Related works [17], [16] and [18] indicate that 
GA-based test data generation outperforms other dynamic approaches e.g. random testing and local search.  
The structure of this paper is organized as follows. Section 2 gives a brief introduction to Genetic Algorithms.  
Section 3 Basic process flow of path-oriented test data generation using GA. Section 4 describes experimental 
settings and gives experimental results based on a triangle classification program. Finally, section 5 summarizes 
the paper with conclusions and directions for future work. 
 
2. Genetic Algorithms 

Genetic Algorithms begins with a set of initial individuals as the first generation, which are sampled at random 
from the problem domain. The algorithms are developed to perform a series of operations that transform the 
present generation into a new, fitter generation [22]. 
Each individual in each generation is evaluated with a fitness function. Based on the evaluation, the evolution of 
the individuals may approach the optimal solution.  
The most common operations of genetic algorithms are designed to produce efficient solution for the target 
problem [15]. These primary operations include: 
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a) Reproduction: This operation assigns the reproduction probability to each individual based on the output of 
the fitness function. The individual with a higher ranking is given a greater probability for reproduction. As a 
result, the fitter individuals are allowed a better survival chance from one generation to the next. 
b) Crossover: This operation is used to produce the descendants that make up the next generation. This operation 
involves the following crossbreeding procedures: 
 i) Randomly select two individuals as a couple from the parent generation. 

ii) Randomly select a position of the genes, corresponding to this couple, as the crossover point. Thus, 
each gene is divided into two parts. 

 iii) Exchange the first parts of both genes corresponding to the couple. 
 iv) Add the two resulted individuals to the next generation. 
c) Mutation: This operation picks a gene at random and changing its state according to the mutation probability. 
The purpose of the mutation operation is to maintain the diversity in a generation to prevent premature 
convergence to a local optimal solution. The mutation probability is given intuitively since there is no definite 
way to determine the mutation probability [22]. 
Upon completion of crossover processing and mutation operations, there will be an original parent population and 
a new offspring population. A fitness function should be devised to determine which of these parents and 
offspring’s can be survived into the next generation. After performing the fitness function, these parents, and 
offspring’s are filtered and a new generation is formed. These operations are iterated until the expected goal is 
achieved. Genetic algorithms guarantee high probability of improving the quality of the individuals over several 
generations according to the Schema Theorem [5]. 
        
3. Basic process flow of path-oriented test data generation using genetic algorithm 

 
 

Figure 1. Basic process flow 

 
A selected target path is the goal for GA to achieve, and an input vector X (a test data) is regarded as an 
individual. To generate path-oriented test data for the program under test using GA, there are five steps and 
Figure 1 depicts the basic process flow [6, 7].  
(1) Control flow graph construction. Control flow graph of the program under test may be constructed manually 
or automatically with related tools. It helps testers to select representative target paths.  
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(2) Target path selection. In general, a program under test has too many paths to test completely. Thus, testers 
have to select meaningful paths as target paths.  
(3) Fitness function construction. In order to evaluate distance between the executed path and the target path, 
fitness function has to be constructed.  
(4) Program instrumentation. This means inserting probes at the beginning of every block of source code to 
monitor program execution and collect related information (e.g. fitness values of individuals).  
(5) Test data generation and the instrumented program execution. Original test data are chosen from their 
domain at random and GA generates new test data in order to achieve the target path. Finally, suitable test data 
that executes along the target paths may be generated or no suitable test data may be found because of exceeding 
max generation [22]. 
 

No  Predicate  Distance if path taken is different 

1 A=B ABS(A-B)  

2 A≠B K  

3 A<B (A-B)+K  

4 A≤B (A-B)  

5 A>B (B-A)+K  

6 A≥B (B-A) 

7 X OR Y MIN(Distance(X), Distance(Y)) 

8 X AND Y (Distance(X) + Distance(Y) 

Table 1: Korel’s distance function 

 
4. Experimental studies 
Triangle classification program 
Triangle classification program has been widely used in the research area of software testing [ 22, 24]. It aims to 
determine if three input edges can form a triangle and so what type of triangle can be formed by them. Figure 2 
gives source code of the program. 
 
TraversedPath= []; 
 TriangleType='Not a Triangle'; 
 if ((SideA+SideB>SideC)&&(SideB+SideC>SideA)&&(SideC+SideA>SideB)) 
     TraversedPath =[TraversedPath 'a']; 
     if ((SideA~=SideB)&&(SideB~=SideC)&&(SideC~=SideA)) 
         TraversedPath=[TraversedPath 'e']; 
         TriangleType='Scalene'; 
     else 
         TraversedPath =[TraversedPath 'b']; 
         if (((SideA==SideB)&&(SideB~=SideC))||((SideB==SideC)&& ... 

(SideC~=SideA))||((SideC==SideA)&&(SideA~=SideB))) 
             TraversedPath =[TraversedPath 'f']; 
             TriangleType='Isosceles'; 
         else 
             TraversedPath=[TraversedPath 'c']; 
             TriangleType='Equilateral'; 
         end 
     end 
 else 
     TraversedPath =[TraversedPath 'd']; 
 end 
 
Figure 2. An example program 

 
1. Control flow graph construction: The tested program (Fig. 2 Triangle classification program) determines 
what kind of triangle can be formed by any three input lengths. The programs control flow diagram, which 
contains four paths, is shown in fig. 3.  
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Figure 3. Control flow graph of the example Program 

 
2. Target path selection: 
Figure 3 is control flow graph of the triangle classification program, which consists of four paths: 

 Path l: <d> //Not-a-triangle 
 Path 2: <ae> //Scalene 
 Path 3: <abf> //Isosceles 
 Path 4: <abc> //Equilateral 

According to probability theory, the path <abc> is the most difficult path to be covered in path testing. Therefore, 
the path <abc> is selected as the target path. 
3. Test case generation and execution:  

Experimental settings 
Settings of standard genetic algorithm (SGA) are as following: 
(1) Coding: binary string 
(2) Length of chromosome: 3Nbits (N=8, 10……..,15), and each edge are range from 1 to 2N 
(3) Population size: from 1 to 1000 
(4) Stochastic universal sampling 
(5) Two-point crossover probability = 0.9 
(6) Mutation probability = 0.01 
(7) Generation gap = 0.96 
(8) Max generation = 1000 

 
Table 2 shows that the average number of test cases on the path of each generation. In this experiment we have 
used Genetic Algorithm for 100 generations with n=15, initial population with 34000 test cases. The size of the 
chromosome is 36. Mutation rate is 0.01. Selection rate 0.5. Figure 2 shows the average number of test cases on 
the path of each generation. 
 
 

 <abc> <d> <ae> <abf> time total test 
cases 

Generation Equilateral Not a 
Triangle 

Scalene Isosceles   

1 157 16918 12100 4825 2.7275 34000 
2 74 9173 5450 2303 1.6894 17000 
3 79 9438 5253 2230 1.5997 17000 
4 77 9831 4960 2132 1.8760 17000 
5 86 9960 4879 2075 1.9791 17000 
6 95 9988 4821 2096 2.3626 17000 
7 87 10240 4626 2047 1.4046 17000 
8 76 10527 4416 1981 1.4381 17000 
9 81 10607 4355 1957 1.6466 17000 
10 67 10636 4395 1902 1.8333 17000 

Table 2.  Average number of test cases on the path of Fig . 3 of each generation 

 

S

1

2

4

6

7

3

5

E

a 

b 

d 

e 

f 
c 

Premal B. Nirpal et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 45



GA Graph

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

Generations

T
es

t 
C

as
es

Equilateral

Not a Triangle

Scalene

Isosceles

 
Fig. 4 Average number of test cases on the path of Fig . 3 of each generation 

 
Using Yong Chen [28] approach, Table 3 shows that the average number of test cases on the path of each 
generation. In this experiment we have used GA for 100 generations with n=15, initial population with 34000 test 
cases.  The size of the chromosome is 36. Mutation rate is 0.01. Selection rate 0.5. Figure 3 shows the average 
number of test cases on the path of each generation. 
 

 <abc> <d> <ae> <abf> time total test 
cases 

Generation  Equilateral Not a 
Triangle 

Scalene Isosceles   

1 0 17181 16805 14 9.2291 34000 
2 0 9169 7818 13 5.1290 17000 
3 0 9301 7689 10 5.2338 17000 
4 0 9545 7439 16 5.6058 17000 
5 0 9863 7121 16 5.6808 17000 
6 0 9848 7136 16 6.2996 17000 
7 0 10024 6962 14 5.9840 17000 
8 0 10159 6832 9 6.0668 17000 
9 0 10335 6653 12 6.2867 17000 
10 0 10620 6361 19 6.1355 17000 

Table 3.  Average number of test cases on the path of Fig . 3 of each generation 
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Fig. 5 Average number of test cases on the path of Fig . 3 of each generation 
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From the experimental results in Figure 4 and Figure 5, it is found that our genetic algorithms based test data 
always outperforms Young Chen based test data. With increasing length of chromosome, Young Chen based 
approach requires more and more number of test data and time to achieve target path. Figure 4 and Figure 5 
shows average number of test data and average time.   
 
5. Conclusion 

In this paper, the genetic algorithms are used to automatically generate test cases for path testing. Using a triangle 
classification program as an example, experiment results show that Our Genetic Algorithm based test data can 
more effectively and efficiently than Young Chen method does. 
The quality of test cases produces by genetic algorithms is higher than the quality of test cases produced by 
random way because the algorithm can direct the generation of test cases to the desirable range fast. This paper 
shows that genetic algorithms are useful in reducing the time required for lengthy testing meaningfully by 
generating test cases for path testing. Furthermore, we build our Genetic Algorithm for structural testing for 
reduce execution time & generate more suitable test cases.  
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