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Abstract: The heart of the MAC unit is the multiplier. Multipliers are the fundamental components in all digital 
processing systems. Many research efforts have been devoted to reducing the power dissipation of different multipliers. 
The largest contribution to the power consumption in a multiplier is due to generation and reduction of partial products. 
Among multipliers, tree multipliers are used in high speed applications such as filters, but these require large area. The 
carry-select-adder (CSA)-based radix multipliers, which have lower area overhead, employ a greater number of active 
transistors for the multiplication operation and hence consume more power. Hence in this work, proposing a new power 
aware VLSI architecture for 16 bit multiplication process for DADDA multiplier in a schematic editor using tanner tool, 
T-spice is used as simulator and w-editor is used for formal verification of the multiplier.  
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I. INTRODUCTION 

Multipliers are among the fundamental components of many digital systems and, hence, their power dissipation 
and speed are of primary concern. For portable applications where the power consumption is the most important 
parameter, one should reduce the power dissipation as much as possible. One of the best ways to reduce the dynamic 
power dissipation, henceforth referred to as power dissipation in this paper, is to minimize the total switching 
activity, i.e., the total number of signal transitions of the system. 
 

Multiplication plays an essential role in computer arithmetic operations for both general purpose and digital 
signal processors. For computational extensive algorithms required by multimedia functions such as finite impulse 
response (FIR) filters, infinite impulse response (IIR) filters and fast Fourier transform (FFT), the percentage of 
power consumption occupied by multiplication shows the importance itself. 

(a) Array multiplier 

 The composition of an array multiplier is shown in Fig 1 There is a one-to-one topological correspondence 
between this hardware structure The generation of N partial products requires N x M two-bit AND gates most of the 
area of the multiplier is devoted to the adding of the N partial products, which requires N -1 M-bit adders. The 
shifting of the partial products for their proper alignment is performed by simple routing and does not require any 
logic. The overall structure can easily be compacted into a rectangle, resulting in a very efficient layout. 
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Fig 1: 4 × 4 bit-array multiplier 

Due to the array organization, determining the propagation delay of this circuit is not straightforward. Consider 
the implementation of the partial sum adders are implemented as ripple-carry structures. Performance optimization 
requires that the critical timing path be identified first. This turns out to be nontrivial. In fact, a large number of 
paths of almost identical length can be identified. A closer look at those critical paths yields an approximate 
expression for the propagation delay. 

tmult= [(M-1) +(N-2)]t carry + (N-1)t sum+ tand      

where tcarry is the propagation delay between input and output carry, tsum is the delay between the input carry and 
sum bit of the full adder, and tand is the delay of the AND gate. 

Since all critical paths have the same length, speeding up just one of them—for instance, by replacing one adder 
by a faster one such as a carry-select adder—does not make much sense from a design standpoint. AH critical paths 
have to be attacked at the same time. From the above equation, it can be deduced that the minimization of tmult 
requires the minimization of both tcarry. 

(b)Dadda multiplier 

In a popular multiplication scheme the array, the summation proceeds in a more regular, but slower manner, to 
obtaining the summation of the partial products .Using this scheme only one row of bits in the matrix is eliminated 
at each stage of the summation. 

In a parallel multiplier the partial products are generated by using array of AND gates. The main problem is the 
summation of the partial products, and it is the time taken to perform this summation which determines the 
maximum speed at which a multiplier may operate. The Dadda scheme essentially minimizes the number of adder 
stages required to perform the summation of partial products. This is achieved by using full and half adders to 
reduce the number of rows in the matrix number of bits at each summation stage.  

Dadda multipliers are a refinement of the parallel multipliers presented by Wallace. Dadda multiplier consists of 
three stages. The partial product matrix is formed in the first stage by N2 AND stages. In the second stage, the partial 
product matrix is reduced to a height of two. Dadda replaced Wallace Pseudo adders with parallel (n, m) counters. A 
Parallel (n, m) counter is a circuit which has n inputs and produce m outputs which provide a binary count of the 
ONEs present at the inputs. A full adder is an implementation of a (3, 2) counter which takes 3 inputs and produces 
2 outputs. Similarly a half adder is an implementation of a (2, 2) counter which takes 2 inputs and produces 2 
outputs. 

In Dadda multipliers that reduce the number of rows as much as possible on each layer, Dadda multipliers do as 
few reductions as possible. Because of this, Dadda multipliers have less expensive reduction phase, but the numbers 
may be a few bits longer, thus requiring slightly bigger adders. 
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In general, the product, p, of two n-bit unsigned binary numbers x and y may be expressed as follows: 
(p(2n-1) p(2n-2)……p2 p1 p0) = ∑ ሼିܡ

ୀ i ^ (xn-1…..x0)} . 2i 

 
In a parallel multiplier, the terms yi ^ (xn-1 - . . . x0) are known as the partial products and are generated using an 

array of AND gates. For a parallel multiplier, the shifting term 2i is inherent in the wiring and does not require any 
explicit hardware. Thus the main problem is the summation of the partial products, and it is the time taken to 
perform this summation which determines the maximum speed at which a multiplier may operate.  

 
The realization of a parallel multiplier for digital computers has been considered in [7] by C.S. Wallace, who 

proposed a tree of pseudo-adders (that means adders without carry propagation) producing two numbers, whose sum 
equals the product. This sum can be obtained by applying the two numbers to a carry-propagating adder. 

Consider the process of multiplication of two binary numbers, each composed of n bit, as been based on obtaining 
the sum of v summands.These summands are obtained, in the simplest schemes, by shifting left the multiplicand by 
1, 2, 3,….(n-1) places, and multiplying it by the corresponding bits of the multiplier. In this situation v = n. Now the 
number of summands can be made less than n by using some multiples of the multiplicand, on the basis of two or 
more multiplier digits[7]. Hence a proposed architecture can be developed by L Dadda, which works on the 
principle of reducing the number of summands. This architecture is based on the use of logical blocks called it as 
parallel (n, m) counters, these are combinational networks with m outputs and n(≤ 2m) inputs. The m outputs, 
considered as a binary number, codify the number of « ones» present at the inputs. 

II Proposed architecture: Dadda multiplier 

The Dadda multiplier is a hardware multiplier design, invented by computer scientist Luigi Dadda in 1965. It is 
slightly faster (for all operand sizes) and requires fewer gates (for all but the smallest operand sizes) than array 
multiplier.  

Dadda multipliers have the same 3 steps: 

1. Multiply (that is - AND) each bit of one of the arguments, by each bit of the other,  yielding N2 results. Depending 
on position of the multiplied bits, the wires carry different weights, for example wire of bit carrying result of a2b3 is 
32.  

2. Reduce the number of partial products to two layers of full and half adders.  

3. Group the wires in two numbers, and add them with a conventional adder. 

Dadda multipliers perform few reductions only when compared to Wallace multiplier. Because of this, Dadda 
multipliers have less expensive reduction phase, but the numbers may be a few bits longer, thus requiring slightly 
bigger adders 

To achieve this, the structure of the second step is governed by slightly more complex rules than in the 
wallace multipliers. The reduction rules however are as follows: 

Take any 3 wires with the same weights and input them into a full adder. The result will be an output wire of the 
same weight and an output wire with a higher weight for each 3 input wires.  

 
     If there are 2 wires of the same weight left, and the current number of output wires with that weight is equal to 2 
(modulo 3), input them into a half adder. Otherwise, pass them through to the next layer.  
 

If there is just 1 wire left, connect it to the next layer.  

This step does only as many adds as necessary, so that the number of output weights stays close to a multiple of 3, 
which is the ideal number of weights when using full adders as     (3, 2) counters. 
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However, when a layer carries at most 3 input wires for any weight, that layer will be the last one. In this case, the 
Dadda tree will use half adder more aggressively to ensure that there are only two outputs for any weight. Then, the 
second rule is above changes as follows 

If there are 2 wires of the same weight left, and the current number of output wires with that weight is equal to 1 
or 2 (modulo 3), input them into a half adder. Otherwise, pass them through to the next layer. 

III Implementation of multiplier 

In order to make the most effective use of the processing elements, the multiplier was implemented as a linear 
pipeline [9]. It was important to ensure that the delay of each processing stage in the pipeline was approximately 
equal so that a ‘bottleneck’ was not introduced by any individual processing stage. 

 
The multiplication of an M-bit multiplicand by an N-bit multiplier yields an N by M matrix of partial products. 

The reduction of this partial product matrix through the parallel application of (3, 2) and (2, 2) counters results in a 
matrix with a height of two. Each (3, 2) counter (full adder) accepts three inputs from a given column and produces 
a sum bit which remains in that column and a carry bit which goes into the next more significant column. A (2, 2) 
counter (half adder) accepts two inputs from a column and produces a sum bit in the same column and a carry bit in 
the next more significant column. 

 
 The implemented 16 × 16 Dadda multiplier with the help of dot diagram is shown in Fig 2 (The notation is taken 

from [8][10] in which the outputs from a full adder are joined by a solid line, and those from half adders are joined 
by a line with a dash through the centre). The Dadda scheme essentially minimizes the number of adder stages 
required to perform the summation of the partial products. This is achieved by using full and half adders to reduce 
the number of rows in the matrix of bits at each summation stage by a factor of 3/2. This results in a final matrix 
consisting of two rows of bits which must be summed using a multiple-bit adder (e.g. a ripple-carry or carry look-
ahead adder). The corresponding circuit for a multiplier using this scheme is shown in Fig 3.2. By way of contrast, 
in a popular multiplication scheme the array, the summation proceeds in a more regular, but slower manner, to 
obtaining the summation of the partial products .Using this scheme only one row of bits in the matrix is eliminated 
at each stage of the summation. 
 

 

Fig 2: Dot diagram of proposed 16 × 16 Dadda multiplier 
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The process of Dadda multiplication is as follows: The entire 16 × 16 multiplication requires six stages. Always 
the first stage is partial products stage, which is obtained by simple multiplication of multiplicand with multiplier. 
The number of rows (height) present at this stage is 16. Now reduce the number of rows further in such a way that 
final stage contains only two rows. For this, Dadda [8] [10] introduces a sequence of intermediate matrix    heights 
that provides the minimum number of reduction stages for a given size multiplier. This sequence determined by 
working back from the final two row matrix, limit the height of each intermediate matrix to the largest integer that is 
no more than 1.5 times the height of its successor. The proposed multiplier 16x16 Dadda multiplier requires six 
reduction stages with intermediate matrix heights of 13, 9,6,4,3 and finally 2. 

 
The single bit in 1st column of the first stage represents the least significant bit of the product. From the dot 

diagram, 2 – row stage can be derived from 3 – row stage, and 3 – row stage can be derived from 4 – row stage with 
the help of (3, 2) and (2, 2) counters. This is (S-1)th stage, where S is the number of stages to implement the 
multiplier. 

 
The 4 – row stage can be derived from 6 – row stage. This is (S-2)th stage. The 6 – row stage can be derived from 

9 – row stage. This can be (S-3)th stage. The 9 – row stage can be derived from 13 – row stage. This is (S-4)th stage 
and then finally 13 – row stage can be derived from partial product stage. 

 
In passing from partial products stage to stage 1, columns are partially reduced, so that no more than 13 rows are 

obtained. From the dot diagram, column 14(14th bit) of partial products stage will be transformed in a 13 –bits 
column in stage 1 by reproducing 12 bits without transformation and transforming only 2 bits by (2, 2) counter. 
Consequently, column 15 ( 15th bit and 14th bit) of the partial products stage will be transformed in a 13 – bits 
column in stage 1 by reproducing 12 bits without transformation and transforming only 2 bits by a (3, 2) counter 
with the help of the carry generated from the previous column. Consequently, only some columns in the central 
portion of partial products stage are actually transformed.  

 
In passing from stage 1 to stage 2, columns having no more than 9 bits are obtained by means of applying (2, 2)  

and (3,2) counters. In succeeding transformations, columns with no more than 6, 4, 3 and 2 bits respectively are 
obtained. 

 
In this Dadda implementation, in general, the number of full adders required is N2-4N+3 and the number of 

half adders is always N-1. 
The below table 1 shows the number of reduction stages required to implement Dadda architecture for various 

number of bits. 
       

Table1: Number of reduction stages for Dadda multiplier 

 

Bits in Multiplier(N) Number of Stages 

3 1 

4 2 

5 ≤ N≤ 6 3 

7 ≤ N ≤ 9 4 

10 ≤ N ≤ 13 5 

14 ≤ N ≤ 19 6 

20 ≤ N ≤ 28 7 

29 ≤ N ≤ 42 8 

43 ≤ N ≤ 63 9 

63 ≤ N ≤ 94 10 
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IV Algorithm 
 
1.Multiply (that is - AND) each bit of one of the arguments, by each bit of the other,  yielding N2 results. 
 

2.Reduce the number of partial products to two layers of full and half adders. For this, Dadda  reduction scheme uses 
the following algorithm. 
 
  a)Let d1 = 2 and dj+1 = [3.dj / 2], where dj is the matrix height for the j-th stage from the end. Find the largest j such 
that at least one column of the matrix has more than dj bits. 
 
  b)Employ (3, 2) and (2, 2) counters to obtain a reduced matrix with no more than dj elements in any column. 

c)Until a matrix with only two rows is generated. Let j = j-1 and repeat step b 

3.Group the wires in two numbers, and add them with a conventional adder. 

V   Flow Chart 

 

Fig 3: Flow Chart of Proposed 16 × 16 Dadda multiplier 
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VI Schematic editor  

 
For this project we used TANNER software tools (T-spice) because it is designed to solve a wide variety of circuit 

problems. Its flexibility is due to robust algorithms which can be optimized by means of user-adjustable parameters. 
T-Spice uses Kirchhoff’s Current Law (KCL) to solve circuit problems. To T-Spice, a circuit is a set of devices 
attached to nodes. The circuit’s state is represented by the voltages at all the nodes. T-Spice solves for a set of node 
voltages that satisfies KCL (implying that the sum of the currents flowing into each node is zero). 

 
In order to evaluate whether a set of node voltages is a solution, T-Spice computes and sums all the currents 

flowing out of each device into the nodes connected to it (its terminals). The relationship between the voltages at a 
device’s terminals and the currents through the terminals is determined by the device model. For example, the 
device model for a resistor of resistance R is I = Δv ⁄ R, where Δv represents the voltage difference across the device. 

 
Most T-Spice simulations start with a DC operating point calculation. A circuit’s DC operating point is its steady 

state, which would in principle be reached after an infinite amount of time if all inputs were held constant. In DC 
analysis, capacitors are treated as open circuits and inductors as short circuits. Because many devices, such as 
transistors, are described by nonlinear device models, the KCL equations that T-Spice solves in DC analysis are 
nonlinear and must therefore be solved by iteration. 
 
VII Implementation of basic multiplier 

Inverter 

  

Fig 4: Schematic diagram of inverter 
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AND gate 

 

Fig 5: Schematic diagram of AND gate  

OR gate 

 
Fig 6: Schematic diagram of OR gate 

Half adder 

 
Fig 7: Schematic diagram of half adder 
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Full adder 

 
Fig 8: Schematic diagram of Full adder 

8 × 8 Array multiplier 

 
Fig 9: Schematic diagram of 8 × 8 array Multiplier 
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8 × 8 array multiplier waveform 

 
Fig 10: Output waveform of 8 × 8 array multiplier 

16 × 16  Array multiplier 

 
Fig 11: Schematic diagram of 16 × 16 array multiplier 
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16 × 16 array multiplier waveform 

 
Fig 12: Output waveform of 16 × 16 array multiplier 

 

8 × 8 Dadda multiplier 

 

 
Fig 13: Schematic Diagram of 8 × 8 Dadda multiplier 
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8 × 8 Dadda multiplier wave form 

 
Fig13: Output waveform of 8 × 8 Dadda multiplier 

16 × 16 Dadda multiplier 

 
Fig14: Schematic Diagram of 16 × 16 Dadda multiplier 
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Schematic wave form of 16x16 Dadda multiplier 

 
Fig15: Output waveform of 16 × 16 Dadda multiplier 

VIII Results 

In this work, Dadda multiplier is implemented by schematic editor using tanner tool, T-spice is used as simulator 
and w-editor is used for formal verification of the multiplier    

  
In conventional 16 × 16 array multiplier architecture, 240 adders are required to implement the multiplier, where 

as in the proposed Dadda multiplier, the total number of adders required are 210. Hence the proposed Dadda 
multiplier saving of 30 adders, then it reduces the total switching activity of circuit design. 

The below table 2 shows the comparison between conventional array multiplier and Dadda multiplier (for both 16 
× 16 and 8 × 8 operations). 

Table2: Comparison between array and Dadda multiplier 

Parameter 
8 × 8 array 
multiplier 

8 × 8 Dadda 
multiplier 

Hardware 
requirement 

Adders – 56  
(Full adders –48 
Half adders – 8 ) 

Adders –42  
(Full adders – 35 
Half adders – 7 ) 

Time(delay) 104.65 Seconds 33.61 Seconds 

 

 

 

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 40



Voltage(v) 
8 × 8 array 
multiplier 

8 × 8 Dadda 
multiplier 

5 2.33e-003w 1.83e-003W 
4 1.306e-001w 1.085e-001w 
3 6.268e-002w 5.109e-002w 
2 2.144e-002w 1.775e-002w 
1 2.703e-002w 2.552e-003w 

 

Voltage(v) 
Power 

16 × 16 array 
multiplier 

16 × 16 Dadda 
multiplier 

5 3.76 e-003 W 3.16 e-003 
4 4.129e-001w 3.046e-001w 
3 2.087e-001w 2.054e-001w 
2 7.295e-002w 6.883e-002w 
1 1.0074e-002w 1.012e-002w 

 

IX Conclusions 

In this project, a proposed Dadda multiplication scheme is implemented for a 16 bit × 16 bit multiplication. With 
respect to the parameters power consumption, area estimate and hardware requirement, this Dadda multiplication 
technique is better than the conventional array multiplication schemes. Hence in this work, saving of 84% of power 
consumption, reduction of 30 adders and saving of 61.18% of time can be done, when compared with array 
multiplication techniques. 

X Future Scope of Work 

 As can be seen from the results obtained by Dadda multiplication scheme, this approach is further extended 
to perform the multiplication of higher bits (i.e., 32 bit × 32 bit, 64 bit × 64 bit and so on). The power consumption 
and area estimate are further reduced by implementing the final adder with look ahead carry generation logic (look 
ahead carry adder). 
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