
Implementation of Dadda and Array
Multiplier Architectures Using Tanner Tool

Addanki Purna Ramesh
Associate Professor, Department of ECE
Sri Vasavi Engg College, Tadepalliguem.

Abstract: The heart of the MAC unit is the multiplier. Multipliers are the fundamental components in all digital
processing systems. Many research efforts have been devoted to reducing the power dissipation of different multipliers.
The largest contribution to the power consumption in a multiplier is due to generation and reduction of partial products.
Among multipliers, tree multipliers are used in high speed applications such as filters, but these require large area. The
carry-select-adder (CSA)-based radix multipliers, which have lower area overhead, employ a greater number of active
transistors for the multiplication operation and hence consume more power. Hence in this work, proposing a new power
aware VLSI architecture for 16 bit multiplication process for DADDA multiplier in a schematic editor using tanner tool,
T-spice is used as simulator and w-editor is used for formal verification of the multiplier.

Key words: Dadda Multiplier, Tanner Tool, Array Multiplier

I. INTRODUCTION

Multipliers are among the fundamental components of many digital systems and, hence, their power dissipation
and speed are of primary concern. For portable applications where the power consumption is the most important
parameter, one should reduce the power dissipation as much as possible. One of the best ways to reduce the dynamic
power dissipation, henceforth referred to as power dissipation in this paper, is to minimize the total switching
activity, i.e., the total number of signal transitions of the system.

Multiplication plays an essential role in computer arithmetic operations for both general purpose and digital
signal processors. For computational extensive algorithms required by multimedia functions such as finite impulse
response (FIR) filters, infinite impulse response (IIR) filters and fast Fourier transform (FFT), the percentage of
power consumption occupied by multiplication shows the importance itself.

(a) Array multiplier

 The composition of an array multiplier is shown in Fig 1 There is a one-to-one topological correspondence
between this hardware structure The generation of N partial products requires N x M two-bit AND gates most of the
area of the multiplier is devoted to the adding of the N partial products, which requires N -1 M-bit adders. The
shifting of the partial products for their proper alignment is performed by simple routing and does not require any
logic. The overall structure can easily be compacted into a rectangle, resulting in a very efficient layout.

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 28

Fig 1: 4 × 4 bit-array multiplier

Due to the array organization, determining the propagation delay of this circuit is not straightforward. Consider
the implementation of the partial sum adders are implemented as ripple-carry structures. Performance optimization
requires that the critical timing path be identified first. This turns out to be nontrivial. In fact, a large number of
paths of almost identical length can be identified. A closer look at those critical paths yields an approximate
expression for the propagation delay.

tmult= [(M-1) +(N-2)]t carry + (N-1)t sum+ tand

where tcarry is the propagation delay between input and output carry, tsum is the delay between the input carry and
sum bit of the full adder, and tand is the delay of the AND gate.

Since all critical paths have the same length, speeding up just one of them—for instance, by replacing one adder
by a faster one such as a carry-select adder—does not make much sense from a design standpoint. AH critical paths
have to be attacked at the same time. From the above equation, it can be deduced that the minimization of tmult
requires the minimization of both tcarry.

(b)Dadda multiplier

In a popular multiplication scheme the array, the summation proceeds in a more regular, but slower manner, to
obtaining the summation of the partial products .Using this scheme only one row of bits in the matrix is eliminated
at each stage of the summation.

In a parallel multiplier the partial products are generated by using array of AND gates. The main problem is the
summation of the partial products, and it is the time taken to perform this summation which determines the
maximum speed at which a multiplier may operate. The Dadda scheme essentially minimizes the number of adder
stages required to perform the summation of partial products. This is achieved by using full and half adders to
reduce the number of rows in the matrix number of bits at each summation stage.

Dadda multipliers are a refinement of the parallel multipliers presented by Wallace. Dadda multiplier consists of
three stages. The partial product matrix is formed in the first stage by N2 AND stages. In the second stage, the partial
product matrix is reduced to a height of two. Dadda replaced Wallace Pseudo adders with parallel (n, m) counters. A
Parallel (n, m) counter is a circuit which has n inputs and produce m outputs which provide a binary count of the
ONEs present at the inputs. A full adder is an implementation of a (3, 2) counter which takes 3 inputs and produces
2 outputs. Similarly a half adder is an implementation of a (2, 2) counter which takes 2 inputs and produces 2
outputs.

In Dadda multipliers that reduce the number of rows as much as possible on each layer, Dadda multipliers do as
few reductions as possible. Because of this, Dadda multipliers have less expensive reduction phase, but the numbers
may be a few bits longer, thus requiring slightly bigger adders.

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 29

In general, the product, p, of two n-bit unsigned binary numbers x and y may be expressed as follows:
(p(2n-1) p(2n-2)……p2 p1 p0) = ∑ ሼିܡ

ୀ i ^ (xn-1…..x0)} . 2i

In a parallel multiplier, the terms yi ^ (xn-1 - . . . x0) are known as the partial products and are generated using an

array of AND gates. For a parallel multiplier, the shifting term 2i is inherent in the wiring and does not require any
explicit hardware. Thus the main problem is the summation of the partial products, and it is the time taken to
perform this summation which determines the maximum speed at which a multiplier may operate.

The realization of a parallel multiplier for digital computers has been considered in [7] by C.S. Wallace, who

proposed a tree of pseudo-adders (that means adders without carry propagation) producing two numbers, whose sum
equals the product. This sum can be obtained by applying the two numbers to a carry-propagating adder.

Consider the process of multiplication of two binary numbers, each composed of n bit, as been based on obtaining
the sum of v summands.These summands are obtained, in the simplest schemes, by shifting left the multiplicand by
1, 2, 3,….(n-1) places, and multiplying it by the corresponding bits of the multiplier. In this situation v = n. Now the
number of summands can be made less than n by using some multiples of the multiplicand, on the basis of two or
more multiplier digits[7]. Hence a proposed architecture can be developed by L Dadda, which works on the
principle of reducing the number of summands. This architecture is based on the use of logical blocks called it as
parallel (n, m) counters, these are combinational networks with m outputs and n(≤ 2m) inputs. The m outputs,
considered as a binary number, codify the number of « ones» present at the inputs.

II Proposed architecture: Dadda multiplier

The Dadda multiplier is a hardware multiplier design, invented by computer scientist Luigi Dadda in 1965. It is
slightly faster (for all operand sizes) and requires fewer gates (for all but the smallest operand sizes) than array
multiplier.

Dadda multipliers have the same 3 steps:

1. Multiply (that is - AND) each bit of one of the arguments, by each bit of the other, yielding N2 results. Depending
on position of the multiplied bits, the wires carry different weights, for example wire of bit carrying result of a2b3 is
32.

2. Reduce the number of partial products to two layers of full and half adders.

3. Group the wires in two numbers, and add them with a conventional adder.

Dadda multipliers perform few reductions only when compared to Wallace multiplier. Because of this, Dadda
multipliers have less expensive reduction phase, but the numbers may be a few bits longer, thus requiring slightly
bigger adders

To achieve this, the structure of the second step is governed by slightly more complex rules than in the
wallace multipliers. The reduction rules however are as follows:

Take any 3 wires with the same weights and input them into a full adder. The result will be an output wire of the
same weight and an output wire with a higher weight for each 3 input wires.

 If there are 2 wires of the same weight left, and the current number of output wires with that weight is equal to 2
(modulo 3), input them into a half adder. Otherwise, pass them through to the next layer.

If there is just 1 wire left, connect it to the next layer.

This step does only as many adds as necessary, so that the number of output weights stays close to a multiple of 3,
which is the ideal number of weights when using full adders as (3, 2) counters.

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 30

However, when a layer carries at most 3 input wires for any weight, that layer will be the last one. In this case, the
Dadda tree will use half adder more aggressively to ensure that there are only two outputs for any weight. Then, the
second rule is above changes as follows

If there are 2 wires of the same weight left, and the current number of output wires with that weight is equal to 1
or 2 (modulo 3), input them into a half adder. Otherwise, pass them through to the next layer.

III Implementation of multiplier

In order to make the most effective use of the processing elements, the multiplier was implemented as a linear
pipeline [9]. It was important to ensure that the delay of each processing stage in the pipeline was approximately
equal so that a ‘bottleneck’ was not introduced by any individual processing stage.

The multiplication of an M-bit multiplicand by an N-bit multiplier yields an N by M matrix of partial products.

The reduction of this partial product matrix through the parallel application of (3, 2) and (2, 2) counters results in a
matrix with a height of two. Each (3, 2) counter (full adder) accepts three inputs from a given column and produces
a sum bit which remains in that column and a carry bit which goes into the next more significant column. A (2, 2)
counter (half adder) accepts two inputs from a column and produces a sum bit in the same column and a carry bit in
the next more significant column.

 The implemented 16 × 16 Dadda multiplier with the help of dot diagram is shown in Fig 2 (The notation is taken

from [8][10] in which the outputs from a full adder are joined by a solid line, and those from half adders are joined
by a line with a dash through the centre). The Dadda scheme essentially minimizes the number of adder stages
required to perform the summation of the partial products. This is achieved by using full and half adders to reduce
the number of rows in the matrix of bits at each summation stage by a factor of 3/2. This results in a final matrix
consisting of two rows of bits which must be summed using a multiple-bit adder (e.g. a ripple-carry or carry look-
ahead adder). The corresponding circuit for a multiplier using this scheme is shown in Fig 3.2. By way of contrast,
in a popular multiplication scheme the array, the summation proceeds in a more regular, but slower manner, to
obtaining the summation of the partial products .Using this scheme only one row of bits in the matrix is eliminated
at each stage of the summation.

Fig 2: Dot diagram of proposed 16 × 16 Dadda multiplier

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 31

The process of Dadda multiplication is as follows: The entire 16 × 16 multiplication requires six stages. Always
the first stage is partial products stage, which is obtained by simple multiplication of multiplicand with multiplier.
The number of rows (height) present at this stage is 16. Now reduce the number of rows further in such a way that
final stage contains only two rows. For this, Dadda [8] [10] introduces a sequence of intermediate matrix heights
that provides the minimum number of reduction stages for a given size multiplier. This sequence determined by
working back from the final two row matrix, limit the height of each intermediate matrix to the largest integer that is
no more than 1.5 times the height of its successor. The proposed multiplier 16x16 Dadda multiplier requires six
reduction stages with intermediate matrix heights of 13, 9,6,4,3 and finally 2.

The single bit in 1st column of the first stage represents the least significant bit of the product. From the dot

diagram, 2 – row stage can be derived from 3 – row stage, and 3 – row stage can be derived from 4 – row stage with
the help of (3, 2) and (2, 2) counters. This is (S-1)th stage, where S is the number of stages to implement the
multiplier.

The 4 – row stage can be derived from 6 – row stage. This is (S-2)th stage. The 6 – row stage can be derived from

9 – row stage. This can be (S-3)th stage. The 9 – row stage can be derived from 13 – row stage. This is (S-4)th stage
and then finally 13 – row stage can be derived from partial product stage.

In passing from partial products stage to stage 1, columns are partially reduced, so that no more than 13 rows are

obtained. From the dot diagram, column 14(14th bit) of partial products stage will be transformed in a 13 –bits
column in stage 1 by reproducing 12 bits without transformation and transforming only 2 bits by (2, 2) counter.
Consequently, column 15 (15th bit and 14th bit) of the partial products stage will be transformed in a 13 – bits
column in stage 1 by reproducing 12 bits without transformation and transforming only 2 bits by a (3, 2) counter
with the help of the carry generated from the previous column. Consequently, only some columns in the central
portion of partial products stage are actually transformed.

In passing from stage 1 to stage 2, columns having no more than 9 bits are obtained by means of applying (2, 2)

and (3,2) counters. In succeeding transformations, columns with no more than 6, 4, 3 and 2 bits respectively are
obtained.

In this Dadda implementation, in general, the number of full adders required is N2-4N+3 and the number of

half adders is always N-1.
The below table 1 shows the number of reduction stages required to implement Dadda architecture for various

number of bits.

Table1: Number of reduction stages for Dadda multiplier

Bits in Multiplier(N) Number of Stages

3 1

4 2

5 ≤ N≤ 6 3

7 ≤ N ≤ 9 4

10 ≤ N ≤ 13 5

14 ≤ N ≤ 19 6

20 ≤ N ≤ 28 7

29 ≤ N ≤ 42 8

43 ≤ N ≤ 63 9

63 ≤ N ≤ 94 10

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 32

IV Algorithm

1.Multiply (that is - AND) each bit of one of the arguments, by each bit of the other, yielding N2 results.

2.Reduce the number of partial products to two layers of full and half adders. For this, Dadda reduction scheme uses
the following algorithm.

 a)Let d1 = 2 and dj+1 = [3.dj / 2], where dj is the matrix height for the j-th stage from the end. Find the largest j such
that at least one column of the matrix has more than dj bits.

 b)Employ (3, 2) and (2, 2) counters to obtain a reduced matrix with no more than dj elements in any column.

c)Until a matrix with only two rows is generated. Let j = j-1 and repeat step b

3.Group the wires in two numbers, and add them with a conventional adder.

V Flow Chart

Fig 3: Flow Chart of Proposed 16 × 16 Dadda multiplier

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 33

VI Schematic editor

For this project we used TANNER software tools (T-spice) because it is designed to solve a wide variety of circuit

problems. Its flexibility is due to robust algorithms which can be optimized by means of user-adjustable parameters.
T-Spice uses Kirchhoff’s Current Law (KCL) to solve circuit problems. To T-Spice, a circuit is a set of devices
attached to nodes. The circuit’s state is represented by the voltages at all the nodes. T-Spice solves for a set of node
voltages that satisfies KCL (implying that the sum of the currents flowing into each node is zero).

In order to evaluate whether a set of node voltages is a solution, T-Spice computes and sums all the currents

flowing out of each device into the nodes connected to it (its terminals). The relationship between the voltages at a
device’s terminals and the currents through the terminals is determined by the device model. For example, the
device model for a resistor of resistance R is I = Δv ⁄ R, where Δv represents the voltage difference across the device.

Most T-Spice simulations start with a DC operating point calculation. A circuit’s DC operating point is its steady

state, which would in principle be reached after an infinite amount of time if all inputs were held constant. In DC
analysis, capacitors are treated as open circuits and inductors as short circuits. Because many devices, such as
transistors, are described by nonlinear device models, the KCL equations that T-Spice solves in DC analysis are
nonlinear and must therefore be solved by iteration.

VII Implementation of basic multiplier

Inverter

Fig 4: Schematic diagram of inverter

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 34

AND gate

Fig 5: Schematic diagram of AND gate

OR gate

Fig 6: Schematic diagram of OR gate

Half adder

Fig 7: Schematic diagram of half adder

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 35

Full adder

Fig 8: Schematic diagram of Full adder

8 × 8 Array multiplier

Fig 9: Schematic diagram of 8 × 8 array Multiplier

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 36

8 × 8 array multiplier waveform

Fig 10: Output waveform of 8 × 8 array multiplier

16 × 16 Array multiplier

Fig 11: Schematic diagram of 16 × 16 array multiplier

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 37

16 × 16 array multiplier waveform

Fig 12: Output waveform of 16 × 16 array multiplier

8 × 8 Dadda multiplier

Fig 13: Schematic Diagram of 8 × 8 Dadda multiplier

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 38

8 × 8 Dadda multiplier wave form

Fig13: Output waveform of 8 × 8 Dadda multiplier

16 × 16 Dadda multiplier

Fig14: Schematic Diagram of 16 × 16 Dadda multiplier

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 39

Schematic wave form of 16x16 Dadda multiplier

Fig15: Output waveform of 16 × 16 Dadda multiplier

VIII Results

In this work, Dadda multiplier is implemented by schematic editor using tanner tool, T-spice is used as simulator
and w-editor is used for formal verification of the multiplier

In conventional 16 × 16 array multiplier architecture, 240 adders are required to implement the multiplier, where

as in the proposed Dadda multiplier, the total number of adders required are 210. Hence the proposed Dadda
multiplier saving of 30 adders, then it reduces the total switching activity of circuit design.

The below table 2 shows the comparison between conventional array multiplier and Dadda multiplier (for both 16
× 16 and 8 × 8 operations).

Table2: Comparison between array and Dadda multiplier

Parameter
8 × 8 array
multiplier

8 × 8 Dadda
multiplier

Hardware
requirement

Adders – 56
(Full adders –48
Half adders – 8)

Adders –42
(Full adders – 35
Half adders – 7)

Time(delay) 104.65 Seconds 33.61 Seconds

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 40

Voltage(v)
8 × 8 array
multiplier

8 × 8 Dadda
multiplier

5 2.33e-003w 1.83e-003W
4 1.306e-001w 1.085e-001w
3 6.268e-002w 5.109e-002w
2 2.144e-002w 1.775e-002w
1 2.703e-002w 2.552e-003w

Voltage(v)
Power

16 × 16 array
multiplier

16 × 16 Dadda
multiplier

5 3.76 e-003 W 3.16 e-003
4 4.129e-001w 3.046e-001w
3 2.087e-001w 2.054e-001w
2 7.295e-002w 6.883e-002w
1 1.0074e-002w 1.012e-002w

IX Conclusions

In this project, a proposed Dadda multiplication scheme is implemented for a 16 bit × 16 bit multiplication. With
respect to the parameters power consumption, area estimate and hardware requirement, this Dadda multiplication
technique is better than the conventional array multiplication schemes. Hence in this work, saving of 84% of power
consumption, reduction of 30 adders and saving of 61.18% of time can be done, when compared with array
multiplication techniques.

X Future Scope of Work

 As can be seen from the results obtained by Dadda multiplication scheme, this approach is further extended
to perform the multiplication of higher bits (i.e., 32 bit × 32 bit, 64 bit × 64 bit and so on). The power consumption
and area estimate are further reduced by implementing the final adder with look ahead carry generation logic (look
ahead carry adder).

XI References

[1] HENLIN, D.A., FERTSCH, M.T., MAZIN, M., and LEWIS, E.T.: “A 16 × 16 bit pipelined multiplier macrocell”, IEEE, J. Solid-State
Circuits, 1985, SC-20, pp. 542-547.

[2] HATAMIAN, M., and CASH G L: “A 70-MHz 8-bit × 8-bit parallel pipelined multiplier in 2.5-µm CMOS” IEEE J Solid-state circuits,
1986, SC-21, pp.505 – 513.

[3] SCHMITT-LANDSIEDEL, D., NOLL, T.G., KLAR, H., and ENDERS, G.: “A pipelined 330 MHz multiplier”. ESSCIRC ’85, 11th
European Solid State Circuits Conf. 16 – 18 September 1985.

[4] LEE, F S., KAELIN, G R., WELCH, B M., ZUCCA, R., SHEN, E., ASBECK, P., LEE, C.P., KIRKPATRICK, C. G., LONG, S.I., and
EDEN R. C.:” A High-Speed LSI GaAs 8 × 8 bit parallel multiplier”, IEEE J. Solid – state Circuits, 1982, SC – 17, pp.638 – 645.

[5] YUNG, H.C., and ALLEN, C.R.: “Part 1: VLSI implementation of an optimized hierarchical multiplier”, IEE Proc. G, Electron. Circuits &
Syst., 1984,131, (2), pp. 56-60.

[6] J. V. MCCARMY, D. PHIL, and J. G. MCWHIRTER, “Completely iterative, pipelined multiplier array suitable for VLSI,” Proc. Inst. Elec.
Eng., vol. 129, Pt. G, no. 2, pp. 40–46,Apr.1982.

[7] WALLACE, C.S.: “A Suggestion for a fast multiplier”, IEEE Trans. on Electronic Computers, vol. EC – 13, pp 14 – 17, February 1964.
[8] DADDA, L.: ‘Some Schemes for Parallel Multipliers’, Alta Freq., 34, 1965, pp. 349-356
[9] D. G. CRAWLEY and G. A. J. AMARATUNGA, “8×8 bit pipelined Dadda multiplier in CMOS” in IEE Proceedings-Circuits, Device and

Systems, vol. 135, no. 6, December 1988, pp. 231–240.
[10] L. DADDA, “On Parallel Digital Multipliers,” Alta Frequenza, vol. 45, pp. 574 – 580, 1976.

Addanki Purna Ramesh / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 2 41

	Implementation of Dadda and ArrayMultiplier Architectures Using Tanner Tool
	Abstract
	Key words
	I. INTRODUCTION
	II Proposed architecture: Dadda multiplier
	III Implementation of multiplier
	IV Algorithm
	V Flow Chart
	VI Schematic editor
	VII Implementation of basic multiplier
	VIII Results
	IX Conclusions
	X Future Scope of Work
	XI References

