
An Improved Montgomery’s Method Over

Public-Key Cryptosystem

GVS Raj Kumar, Lagadapati Maanasa , K.Naveen Kumar, P.Chandra Sekhar , Mahesh Kasula

Dept of Information Technology, GITAM University, Visakhapatnam, India

Abstract- This paper deals with improving Montgomery’s algorithm. We improve mongomery’s algorithm such that
modular multiplications can be executed two times faster. Each iteration in our algorithm requires only one addition,
while that in Montgomery’s requires two additions. We then propose a cellular array to implement modular
exponentiation for the Rivest–Shamir–Adleman cryptosystem. It has approximately 2n cells, where n is the word
length. The cell contains one full-adder and some controlling logic. The time to calculate a modular exponentiation is
about 2n2 clock cycles.

Keywords-Cellular array,data security,modular multiplication, Montgomery’s algorithm, public-key cryptography,
RSA.

I. INTRODUCTION

One of the most widely used and popular public key cryptographic system is Rivest, Shamir and
Adleman(RSA) encryption algorithm. RSA PublicKeyCryptosystem (PKC) is widely used in today’s secure
electronic communication. It was invented in 1978 by Rivest et al. [1].

Classical symmetric cryptographic algorithms provide a secure communication channel to each pair of users.
In order to establish such a channel, the symmetric key algorithms employ a classical encryption scheme in which
both the algorithm depends on the same secret key, k. This key is used for both encryption and decryption. After
establishing a secure communication channel, the secrecy of a message, m can be guaranteed. Symmetric
cryptography also includes methods to detect modification of messages and methods to verify the origin of a
message. Thus, confidentiality and integrity can be accomplished using secret key techniques. A problem of
concern is how to send the secret key between the transmitter and receiver. For a PKC, the decryption key is
different from the encryption key, and the public key is either of the two keys. Deriving the decryption/encryption
key from the public encryption/decryption key is difficult by definition. If the transmitter encrypts a plaintext by
the receiver’s public encryption key, only the receiver has the key to decrypt the ciphertext to its original plaintext.
Moreover, the PKC’s also provide a powerful solution to the implementation of digital signature [1], [2]. The
security of a PKC is provided by the characteristics of its one-way function. Let f: x y denote a one-way
mapping, then the calculation of f--1 (y) has to be hard, given the calculation of f(x). The famous RSA scheme [1]
is based on the Euler and Fermat theorem [3]. Its security is related to the decomposition of N, which is the
product of two distinct large prime numbers. It is known that large number decomposition is hard.

The core arithmetic of RSA is modular exponentiation which can be accomplished by a sequence of
modular multiplication. Therefore, fast modular multiplication becomes the key to real-time encryption and
decryption. However, since the numbers in a usable RSA PKC are very large (512 bytes or more), its
implementation is challenging. Also, due to range comparison and adjustment, the implementation of modular
multipliers is much harder than that of normal multipliers [4], [5]. To reduce the time complexity for comparison,
a modular multiplication algorithm based on Montgomery’s modular arithmetic [6] was proposed by Eldridge [7].
Montgomery’s algorithm needs n iterations in each modular multiplication and two additions per iteration.In
modified montgomery’s algorithm we separate the multiplication and modular reduction steps in montgomery’s
algorithm such that only one addition is required in each iteration. The number of iterations in the modified
algorithm is two times that of Montgomery’s, hence the overall computation time is not reduced. However, the
modified algorithm guarantees that the partial products in all modular multiplications fall in the correct range ,
hence, the post adjustment in the original algorithm is removed. The modified algorithm leads to both simpler
architecture and better performance.So we further modified the algorithm by considering only the least significant
half of the product in the modular reduction step. The number of iterations is the same as in Montgomery’s
algorithm, hence, the computation time is reduced in half. In this paper, we revise Montgomery’s algorithm such
that only one addition is required in each iteration, and the number of iterations is not increased. Therefore, the

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 12

speed of modular multiplication can be doubled. Even in software implementation, the proposed modular
arithmetic is at least twice faster than other existing algorithms without using the Chinese Remainder Theorem
(CRT). The proposed algorithm is implemented by a 2’s-complement multiplier and a modular shifter-adder, both
of which are designed as linear cellular arrays. For a word length of n, both arrays have about n cells, and each cell
contains one Full-Adder (FA) and some controlling logic. The time to calculate a modular exponentiation is 2n2
clock cycles.

II. MONTGOMERY’S METHODS

The motivation for studying high speed and space-efficient algorithms for modular multiplication comes
from their applications in public key cryptography. The RSA algorithm requires a large number of modular
exponentiation, which binary methods can break into a series of modular multiplications. These computations
are time taking, bringing down the speeds for key generation, encryption and decryption. One of the most
interesting and useful advances in this realm has been what we call the Montgomery multiplication algorithm.

 The Montgomery multiplication algorithm speeds up the modular multiplications and squaring required for
exponentiation. It computes the Montgomery product.

 Montgomery Multiplication Algorithm

A.Montgomery’s Algorithm

 Let A= {a n-1 , a n-2 ,……… a 1 , a 0 } and B= {b n-1 ,b n-2 ,……… b1 , b 0 } be two n-bytes
integers, and N be an n-bytes odd integer, where 0≤B<N.

FUNCTION MM (A, B, N):

Step 1: S0=0

Step 2: for i=0 to n-1

Step 3: if (Si + ai B is even)

 Si+1 = (Si + ai B)/2

Step 4: else

 Si+1 = (Si + ai B + N)/2

Step 5: return Sn

A sequence S1, S2… Sn is generated by MM (), where 2j Sj ≡ (
1

0

j

i




 ai 2

i)B.(mod N) and 0≤ Sj

<N+B<2N for j=1 to n. Let R= 2n , then

 RSn ≡ AB (mod N) --(1)

Montgomery’s algorithm needs n iterations in each modular multiplication and requires two additions
per iteration. Also, the final result Sn is not in correct range, hence, post adjustment is required.

B. Improved Montgomery’s Algorithm

 If ai B in procedure MM() can be precomputed,its implementation will be much easier. It first

calculates the product X=A*B which is represented as
2 1

0

n

i




 xi 2

i , and then employs Montgomery’s algorithm

to reduce the range.The modified algorithm is

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 13

FUNCTION CM(A,B,N)

Step 1:
2 1

0

n

i




 xi 2

i =A*B

Step 2: S0=0

Step 3: for i=0 to 2n-1

Step 4: if (Si + xi is even)

 Si+1 = (Si + xi)/2

Step 5: else

 Si+1 = (Si + xi + N)/2

Step 6: return S2n

 A sequence S1, S2,……., Sn is generated by CM() , where 2j Sj ≡ (
1

0

j

i




 xi 2

i) (mod N) and 0≤ Sj <N, for

j=1 to 2n. Note that the final result is S2n instead of Sn, and

 R2 S2n≡AB (mod N) --(2)

In this algorithm, only one addition is required in each iteration. The number of iterations, however, is
two times that of Montgomery’s algorithm , hence the overall computation time of the iterations is about the
same.The advantage of this algorithm is that the partial products in all modular multiplications fall in the correct
range , hence the post adjustment in the original algorithm is removed.

It has been shown that the most significant half of the product as derived by the above algorithm can be
considered separately to reduce the number of iterations.Based on that, we further improve the algorithm to
enhance the computation speed.We let

 X=RXM + XL -- (3)

Where XM and XL are the most and least significant halves of X , respectively.Note that 0≤ XL<R , and we can
use procedure Y() described below to find Sn such that

 RSn ≡ XL (mod N) -- (4)

FUNCTION Y (XL,N):

Step 1: S0=0

Step 2: for i=0 to n-1

Step 3: if(Si + xi is even)

 Si+1 = (Si + xi)/2

Step 4: else

 Si+1 = (Si + xi + N)/2

Step 5: return Sn

Therefore, X = RXM + RSn (mod N)

 i.e., XM + Sn ≡ R-1 X (mod N) -- (5)

where R-1R≡ 1(mod N). This also holds for negative X.

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 14

Now, let A and B be (n+1)-b 2’s complement numbers and

 –N ≤ A,B < N.Since X = A * B , we have - N2 ≤ X ≤ N2.

We can represent X as a (2n+1)-b 2’s complement number, i.e.,

X= -x2n
 22n +

2 1

0

n

i




 xi 2

i = R XM + XL -- (6)

 Where XM = -x2n
 2n +

2 1

0

n

i




 xi+n 2i and

 XL =
1

0

n

i




 xi 2

i

From the following inequality:

-R (N+1) < -N2 - XL ≤ R XM ≤ N2 - XL < R N
We have – (N+1)< XM < N i.e., –N ≤ XM < N ,We define

 FN = XM + Sn , if X < 0

 XM + Sn - N, if X ≥ 0

 FN ≡ R-1 X (mod N) -- (7)

Since –N ≤ XM < N and 0 ≤ Sn < N we obtain

 –N ≤ FN < N

The proposed modular multiplication procedure is as follows:

FUNCTION SM(A,B,N)

Step 1: A × B  (XM , XL)

Step 2: Sn = Y(XL,N)

Step 4: if (A×B ≥ 0)

 FN = XM + Sn - N

Step 5: else

 FN = XM + Sn

Step 6: return FN

We can start procedure Y() before finishing the calculation of XL because each iteration needs only
one of the product bits.Therefore, after generating the least significant bit of XL, we can start procedure Y().The
next iteration of Y() begins after the previous iteration is finished and the next product bit is generated.

 Procedure SM() takes about n iterations to calculate FN and each iteration requires only one addition.It
is two times faster than procedure MM() and procedure CM().

 The computation of XM and FN and the next modular multiplication can overlap.

So this algorithm is implemented by a 2’s complement multiplier and a modular shifter-adder, both of which are
designed as linear cellular arrays.For a word length of n, both arrays have about n cells, and each cell contains
one full-adder and some controlling logic.

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 15

Montgomery Exponentiation Algorithm

Let the binary representation of E be e n-1 , e n-2 ,……… e 1 , e 0 , then

ME = Me0 , M 2*e1 , Mpow(2,2)*e2 ………., Mpow(2,n-1)*en-1

-- (8)

The proposed modular exponentiation procedure is shown below, where the final value is equal to ME (mod N
).

FUNCTION SE(M,R,E,N)

 Step 1: M0 = SM(M,R2,N)

 Step 2: P0 = 1

 Step 3: for i=0 to n-1

 Step 4: Mj+1 = SM(Mj,Mj,N)

 Step 5: if(ej = 1) Pj+1 = SM(Mj,Pj,N)

 Step 6: else Pj+1 = P

 Step 7: return Pn

The final result will be in the range (- N , N) , thus , post adjustment can be easily done by adding Pn
with N if Pn < 0

III.RSA CRYPTOSYSTEM

A. Software Implementation

The speed of an algorithm implemented as a computer program is mainly determined by the total
number of instruction steps to be executed. Let the central processing unit (CPU) word length be w and, without
loss of generality, w divides evenly into n. Normally, an n-b arithmetic operation is partitioned into at least n/w
w-b operations. For example, an n-b addition can be implemented by n/w w-b additions. An nXn multiplication
may be implemented by about 2n/w w-b multiplications and some w-b additions [8]. The latter will be
neglected.

Procedure SM() has about n n-b additions, while previousalgorithms require 2n n-b additions. Note
that when using the approach of [5] complex branch instructions are then required, while in others, only simple
conditional-jump (JC) instructions are needed. Also note that each n-b arithmetic operation is assumed to be
realized by n/w w-b instructions. Our approach has better performance than others. Using our algorithm, the
total number of instructions is (2n2/w) +2n+(2n/w).

B. Linear Bit Cellular-Array

 We use an (n+1)-by-(n+1) 2’s complement multiplier to implement the integer product A * B. Our
linear array multiplier is based on the Baugh-Wooley 2’s complement array multiplier, in which carry signals
propagate from the right to left hand side.If we consider the array as a dependence graph and the projection
along the (1,1) direction,we obtain the linear cellular array.The calculation of FN and the multiplication A × B
can be done by a singular cellular array, which performs multiplication and accumulation.It first generates XL

and sends to the Y-stage.After 2n clock cycles, it calculates FN by switching the input data to XM and Sn

sequentially.

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 16

IV. EXPERIMENTAL RESULTS

 In this work, 1kbyte message was encrypted using RSA algorithm with various lengths of keys ranging
from 16 to 128 bits and time taken for each encryption with the respective key lengths were recorded and these
values were plotted on a time taken vs key size graph. And it was observed that the time taken for encryption
increases as key size increases.

Table I - Encryption of 1 kbyte using RSA

Key
Size in

bits

RSA -
Encryption

RSA-M
Encryption

RSA IM

Encryption

16 155 143 71

32 186 172 84

48 239 193 89

64 278 202 98

Table II - Decryption of 1 kbyte using RSA

Key Size in
bits

RSA - Decryption

RSA-M Decryption

RSA IM Decryption

16 192 157 76

32 249 197 94

48 311 223 109

64 392 251 124

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 17

Fig.1: Figure showing results for 1k Message Encryption

Fig.2: Figure showing results for 1k Message Decryption

The same 1kbyte was encrypted using RSA with Montgomery’s algorithm and improved
Montgomery’s algorithm with various lengths of keys ranging from 16 to 64 bits and time taken for each
encryption with the respective key lengths were recorded and plotted on the above time taken vs key size graph.
And it was observed that the time taken for encryption increases as key size increases.

From the plotted graphs, it was observed that the time taken for encryption using RSA with
Montgomery’s method was lesser than the time taken for encryption using RSA and time taken for encryption
using RSA with Improved Montgomery’s method was lesser than the time taken for encryption using RSA with
Montgomery’s algorithm and is two times faster.

 The obtained cipher texts were decrypted with corresponding private keys and time taken for each
decryption with the respective key lengths were recorded and these values were plotted on a time taken vs key
size graph. And it was observed that the time taken for decryption increases as key size increases.

 The same cipher texts were decrypted using RSA with Montgomery’s algorithm and Improved
Montgomery’s algorithm with various lengths of keys ranging from 16 to 64 bits and time taken for each
decryption with the respective key lengths were recorded and plotted on the above time taken vs key size graph
And it was observed that the time taken for decryption increases as key size increases.

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 18

From the plotted graphs, it was observed that the time taken for decryption using RSA with
Montgomery’s method was lesser than the time taken for encryption using RSA and time taken for decryption
using RSA with Improved Montgomery’s method was lesser than the time taken for decryption using RSA with
Montgomery’s algorithm and is two times faster.

V. CONCLUSION

The proposed new Montgomery’s modular arithmetic, and a low-cost high-speed cellular array for
modular exponentiation which implements the RSA cryptosystem outperforms the previous algorithms and also
the proposed array is two times faster than those based on the original Montgomery’s algorithm.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM,

vol.21, no. 2, pp. 120–126, Feb. 1978.
[2] T. El Gamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Trans. Inform. Theory, vol. IT-

31, pp.469–472, July 1985.
[3] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers. New York: Wiley, 1991.
[4] E.-H. Lu, L. Harn, J.-Y. Lee, and W.-Y. Hwang. “A programmable VLSI architecture for computing multiplication and polynomial

evaluation modulo a positive integer,” IEEE J. Solid-State Circuits, vol. 23, pp. 204–207, Feb. 1988.
[5] P. W. Baker. “Fast computation of A*B modulo N,” Electron. Lett.,vol. 23, no. 15, pp. 794–795, July 1987. 284 IEEE

TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 2, JUNE 1999
[6] P. L. Montgomery, “Modular multiplication without trial division,”Math. Comput., vol. 44, pp. 519–521, 1985.
[7] S. E. Eldridge, “A faster modular multiplication algorithm,” Int. J.Comput. Math., vol. 40, pp. 63–68, 1991.
[8] D. E. Knuth, Seminumerical Algorithms, The Art of Computer Programming, vol. 2, 2nd ed. Reading, MA: Addison-Wesley, 1981.

GVS Raj Kumar et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 2 No. 1 19

	An Improved Montgomery’s Method OverPublic-Key Cryptosystem
	Abstract
	Keywords
	I. INTRODUCTION
	II. MONTGOMERY’S METHODS
	III.RSA CRYPTOSYSTEM
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION
	REFERENCES

