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Abstract- This paper deals with improving Montgomery’s algorithm. We improve mongomery’s algorithm such that 
modular multiplications can be executed two times faster. Each iteration in our algorithm requires only one addition, 
while that in Montgomery’s requires two additions. We then propose a cellular array to implement modular 
exponentiation for the Rivest–Shamir–Adleman cryptosystem. It has approximately 2n cells, where n is the word 
length. The cell contains one full-adder and some controlling logic. The time to calculate a modular exponentiation is 
about 2n2 clock cycles. 
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I. INTRODUCTION 

One of the most widely used and popular public key cryptographic system is Rivest, Shamir and 
Adleman(RSA) encryption algorithm. RSA PublicKeyCryptosystem (PKC) is widely used in today’s secure 
electronic communication. It was invented in 1978 by Rivest et al. [1].  

Classical symmetric cryptographic algorithms provide a secure communication channel to each pair of users. 
In order to establish such a channel, the symmetric key algorithms employ a classical encryption scheme in which 
both the algorithm depends on the same secret key, k. This key is used for both encryption and decryption. After 
establishing a secure communication channel, the secrecy of a message, m can be guaranteed. Symmetric 
cryptography also includes methods to detect modification of messages and methods to verify the origin of a 
message. Thus, confidentiality and integrity can be accomplished using secret key techniques. A problem of 
concern is how to send the secret key between the transmitter and receiver. For a PKC, the decryption key is 
different from the encryption key, and the public key is either of the two keys. Deriving the decryption/encryption 
key from the public encryption/decryption key is difficult by definition. If the transmitter encrypts a plaintext by 
the receiver’s public encryption key, only the receiver has the key to decrypt the ciphertext to its original plaintext. 
Moreover, the PKC’s also provide a powerful solution to the implementation of digital signature [1], [2]. The 
security of a PKC is provided by the characteristics of its one-way function. Let f: x y denote a one-way 
mapping, then the calculation of f--1 (y) has to be hard, given the calculation of f(x). The famous RSA scheme [1] 
is based on the Euler and Fermat theorem [3]. Its security is related to the decomposition of N, which is the 
product of two distinct large prime numbers. It is known that large number decomposition is hard. 

The core arithmetic of RSA is modular exponentiation which can be accomplished by a sequence of 
modular multiplication. Therefore, fast modular multiplication becomes the key to real-time encryption and 
decryption. However, since the numbers in a usable RSA PKC are very large (512 bytes or more), its 
implementation is challenging. Also, due to range comparison and adjustment, the implementation of modular 
multipliers is much harder than that of normal multipliers [4], [5]. To reduce the time complexity for comparison, 
a modular multiplication algorithm based on Montgomery’s modular arithmetic [6] was proposed by Eldridge [7]. 
Montgomery’s algorithm needs n iterations in each modular multiplication and two additions per iteration.In 
modified montgomery’s algorithm we separate the multiplication and modular reduction steps in montgomery’s 
algorithm such that only one addition is required in each iteration. The number of iterations in the modified 
algorithm is two times that of Montgomery’s, hence the overall computation time is not reduced. However, the 
modified algorithm guarantees that the partial products in all modular multiplications fall in the correct range , 
hence, the post adjustment in the original algorithm is removed. The modified algorithm leads to both simpler 
architecture and better performance.So we further modified the algorithm by considering only the least significant 
half of the product in the modular reduction step. The number of iterations is the same as in Montgomery’s 
algorithm, hence, the computation time is reduced in half. In this paper, we revise Montgomery’s algorithm such 
that only one addition is required in each iteration, and the number of iterations is not increased. Therefore, the 
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speed of modular multiplication can be doubled. Even in software implementation, the proposed modular 
arithmetic is at least twice faster than other existing algorithms without using the Chinese Remainder Theorem 
(CRT). The proposed algorithm is implemented by a 2’s-complement multiplier and a modular shifter-adder, both 
of which are designed as linear cellular arrays. For a word length of n, both arrays have about n cells, and each cell 
contains one Full-Adder (FA) and some controlling logic. The time to calculate a modular exponentiation is 2n2 
clock cycles. 

II. MONTGOMERY’S METHODS 

The motivation for studying high speed and space-efficient algorithms for modular multiplication comes 
from their applications in public key cryptography. The RSA algorithm requires a large number of modular 
exponentiation, which binary methods can break into a series of modular multiplications. These computations 
are time taking, bringing down the speeds for key generation, encryption and decryption. One of the most 
interesting and useful advances in this realm has been what we call the Montgomery multiplication algorithm. 

       The Montgomery multiplication algorithm speeds up the modular multiplications and squaring required for 
exponentiation. It computes the Montgomery product. 

 

 Montgomery Multiplication Algorithm 

A.Montgomery’s Algorithm 

            Let   A= {a n-1 , a n-2 ,……… a 1 , a 0 }  and              B= {b n-1 ,b n-2 ,……… b1 , b 0 }  be two n-bytes 
integers, and N be an n-bytes odd integer, where 0≤B<N. 

FUNCTION MM (A, B, N): 

Step 1: S0=0 

Step 2: for   i=0   to   n-1  

Step 3: if (Si + ai B is even) 

                Si+1 = (Si + ai B)/2 

Step 4: else  

                Si+1 = (Si + ai B + N)/2 

Step 5: return Sn   

A sequence S1, S2… Sn is generated by MM ( ), where 2j Sj ≡ (
1

0

j

i




 ai 2

i )B.(mod N) and 0≤ Sj  

<N+B<2N for j=1 to n. Let R= 2n , then                             

                              RSn ≡ AB (mod N) --(1) 

Montgomery’s algorithm needs n iterations in each modular multiplication and requires two additions 
per iteration. Also, the final result Sn  is not in correct range, hence, post adjustment is required. 

B. Improved Montgomery’s Algorithm 

 If ai B in procedure MM( ) can be precomputed,its implementation will be much easier. It first 

calculates the product  X=A*B which is represented as 
2 1

0

n

i




 xi 2

i  , and then employs Montgomery’s algorithm 

to reduce the range.The modified algorithm is 
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FUNCTION  CM(A,B,N) 

Step 1: 
2 1

0

n

i




 xi 2

i  =A*B 

Step 2: S0=0 

Step 3: for   i=0   to 2n-1  

Step 4: if (Si + xi is even) 

                Si+1 = (Si + xi )/2 

Step 5: else  

                Si+1 = (Si + xi + N)/2  

Step 6: return S2n   

 A sequence S1, S2,……., Sn is generated by CM( ) , where 2j Sj  ≡ (
1

0

j

i




 xi 2

i ) (mod N) and 0≤ Sj  <N,  for 

j=1 to 2n. Note that the final result is S2n instead of Sn, and  

                       R2 S2n≡AB (mod N)  --(2) 

In this algorithm, only one addition is required in each iteration. The number of iterations, however, is 
two times that of Montgomery’s algorithm , hence the overall computation time of the iterations is about the 
same.The advantage of this algorithm is that the partial products in all modular multiplications fall in the correct 
range , hence the post adjustment in the original algorithm is removed. 

It has been shown that the most significant half of the product as derived by the above algorithm can be 
considered separately to reduce the number of iterations.Based on that, we further improve the algorithm to 
enhance the computation speed.We let 

                           X=RXM + XL     -- (3) 

Where XM and  XL are the most and least significant halves of X , respectively.Note that 0≤ XL<R , and we  can 
use procedure Y( ) described below to find Sn  such that  

                           RSn ≡ XL (mod N)  -- (4) 

FUNCTION  Y (XL,N): 

Step 1: S0=0 

Step 2: for   i=0   to   n-1  

Step 3: if(Si + xi  is even) 

                Si+1  = (Si + xi )/2 

Step 4: else  

                Si+1  = (Si + xi  + N)/2  

Step 5: return Sn   

Therefore,      X = RXM +   RSn (mod N) 

        i.e.,  XM +  Sn  ≡  R-1 X  ( mod N )  -- (5) 

where R-1R≡ 1(mod N). This also holds for negative X.  
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Now, let A and B be (n+1)-b 2’s complement numbers and 

 –N ≤ A,B < N.Since X = A * B , we have   - N2 ≤ X ≤ N2. 

We can represent X as a (2n+1)-b 2’s complement number, i.e., 

X= -x2n 
 22n  + 

2 1

0

n

i




 xi 2

i  = R XM + XL  -- (6) 

 Where            XM = -x2n 
 2n   +

2 1

0

n

i




 xi+n 2i        and 

                       XL = 
1

0

n

i




 xi 2

i   

From the following inequality: 

-R ( N+1 ) <  -N2 - XL ≤ R XM ≤  N2 - XL < R N 
We have – ( N+1 )< XM < N  i.e., –N ≤ XM < N  ,We define  

                             FN = XM  +  Sn ,         if  X < 0 

                               XM  +  Sn  - N,    if X ≥ 0  

                 FN  ≡  R-1 X  ( mod N )  -- (7) 

Since  –N ≤ XM < N  and  0 ≤ Sn  < N  we obtain 

                     –N ≤ FN  < N  

The proposed modular multiplication procedure is as follows: 

FUNCTION  SM(A,B,N) 

Step 1: A × B  (XM , XL) 

Step 2: Sn = Y(XL,N)  

Step 4: if ( A×B  ≥ 0 ) 

                FN  =  XM  +  Sn  - N 

Step 5: else  

                FN  =  XM  +  Sn   

Step 6: return FN   

We can start procedure Y( ) before finishing the calculation of XL because each iteration needs only 
one of the product bits.Therefore, after generating the least significant bit of XL, we can start procedure Y( ).The 
next iteration of Y( )  begins after the previous iteration is finished and the next product bit is generated. 

  Procedure SM( ) takes about n iterations to calculate FN and each iteration requires only one addition.It 
is two times faster than procedure MM( ) and procedure CM( ).  

 The computation of  XM  and  FN and the next modular multiplication can overlap. 

So this algorithm is implemented by a 2’s complement multiplier and a modular shifter-adder, both of which are 
designed as linear cellular arrays.For a word length of n, both arrays have about n cells, and each cell contains 
one full-adder and some controlling logic. 
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Montgomery Exponentiation Algorithm 

Let the binary representation of E be  e n-1 , e n-2 ,……… e 1 , e 0  , then 

ME  =  Me0  ,  M 2*e1 ,  Mpow(2,2)*e2  ……….,  Mpow(2,n-1)*en-1 

-- (8) 

The proposed modular exponentiation procedure is shown below, where the final value is equal to ME  ( mod N 
). 

FUNCTION SE(M,R,E,N) 

 Step 1: M0 = SM(M,R2,N) 

 Step 2: P0 = 1 

 Step 3: for  i=0  to  n-1  

 Step 4: Mj+1 = SM(Mj,Mj,N) 

 Step 5: if(ej  = 1) Pj+1 = SM(Mj,Pj,N) 

 Step 6: else Pj+1 = P 

 Step 7: return Pn 

The final result will be in the range ( - N , N ) , thus , post adjustment can be easily done by adding  Pn 
with N if Pn < 0 

              
III.RSA CRYPTOSYSTEM 

 

A. Software Implementation  

The speed of an algorithm implemented as a computer program is mainly determined by the total 
number of instruction steps to be executed. Let the central processing unit (CPU) word length be w and, without 
loss of generality, w divides evenly into n. Normally, an n-b arithmetic operation is partitioned into at least n/w  
w-b operations. For example, an n-b addition can be implemented by n/w w-b additions. An nXn multiplication 
may be implemented by about 2n/w w-b multiplications and some w-b additions [8]. The latter will be 
neglected. 

 
 

Procedure SM( ) has about n n-b additions, while previousalgorithms require 2n n-b additions. Note 
that when using the approach of [5] complex branch instructions are then required, while in others, only simple 
conditional-jump (JC) instructions are needed. Also note that each n-b arithmetic operation is assumed to be 
realized by n/w w-b instructions. Our approach has better performance than others. Using our algorithm, the 
total number of instructions is (2n2/w) +2n+(2n/w).  
 

B. Linear Bit Cellular-Array  

   We use an (n+1)-by-(n+1) 2’s complement multiplier to implement the integer product A * B. Our 
linear array multiplier is based on the Baugh-Wooley 2’s complement array multiplier, in which carry signals 
propagate from the right to left hand side.If we consider the array as a dependence graph and the projection 
along the (1,1) direction,we obtain the linear cellular array.The calculation of  FN and the multiplication A × B    
can be done by a singular cellular array, which performs multiplication and accumulation.It first generates XL 

and sends to the Y-stage.After 2n clock cycles, it calculates FN   by switching the input data to XM  and Sn 

sequentially.      
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IV.  EXPERIMENTAL RESULTS 

       In this work, 1kbyte message was  encrypted using RSA algorithm with various lengths of keys ranging 
from 16 to 128 bits and time taken for each encryption with the respective key lengths were recorded and these 
values were plotted on a time taken vs key size graph. And it was observed that the time taken for encryption 
increases as key size increases. 

 

Table I - Encryption of 1 kbyte using RSA 

Key 
Size in 

bits 

RSA - 
Encryption 

 
RSA-M 
Encryption 

 

 
RSA IM 

Encryption 

16 155 143 71 

32 186 172 84 

48 239 193 89 

64 278 202 98 

 

Table II - Decryption of 1 kbyte using RSA 

Key Size in 
bits 

RSA - Decryption 
 

RSA-M Decryption 
 

RSA IM Decryption 

16 192 157 76 

32 249 197 94 

48 311 223 109 

64 392 251 124 
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Fig.1: Figure showing results for 1k Message Encryption 

Fig.2: Figure showing results for 1k Message Decryption 

The same 1kbyte was encrypted using RSA with Montgomery’s algorithm and improved 
Montgomery’s algorithm with various lengths of keys ranging from 16 to 64 bits and time taken for each 
encryption with the respective key lengths were recorded and plotted on the above time taken vs key size graph. 
And it was observed that the time taken for encryption increases as key size increases.  

From the plotted graphs, it was observed that the time taken for encryption using RSA with 
Montgomery’s method was lesser than the time taken for encryption using RSA and time taken for encryption 
using  RSA with Improved Montgomery’s method was lesser than the time taken for encryption using RSA with 
Montgomery’s algorithm and is two times faster. 

       The obtained cipher texts were decrypted with corresponding private keys and time taken for each 
decryption with the respective key lengths were recorded and these values were plotted on a time taken vs key 
size graph. And it was observed that the time taken for decryption increases as key size increases. 

       The same cipher texts were decrypted using RSA with Montgomery’s algorithm and Improved 
Montgomery’s  algorithm with various lengths of keys ranging from 16 to 64 bits and time taken for each 
decryption with the respective key lengths were recorded and plotted on the above time taken vs key size graph 
And it was observed that the time taken for decryption increases as key size increases. 
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From the plotted graphs, it was observed that the time taken for decryption using RSA with 
Montgomery’s method was lesser than the time taken for encryption using RSA and time taken for decryption 
using  RSA with Improved Montgomery’s method was lesser than the time taken for decryption using RSA with 
Montgomery’s algorithm and is two times faster.  

V.   CONCLUSION 

The  proposed new Montgomery’s modular arithmetic, and a low-cost high-speed cellular array for 
modular exponentiation which  implements the RSA cryptosystem outperforms the previous algorithms and also   
the proposed array is two times faster than those based on the original Montgomery’s algorithm. 
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