

Automated Feedback System for Multimedia
in Multiprocessors

Jestin Rajamony, Dr.K.Ramar, K.P.Ajitha Gladis
Abstract

 In spite of many real times scheduling algorithms available it is not clear that these scheduling algorithms
support fully the problems in the real time system in multiprocessors. There are certain “open loop” algorithm that
can support only some set of characteristics such as the deadlines, precedence constraints, shared resources and
future release time etc. Open loop are being referred as once the schedules are fixed there is no alterations based
on the continuous feedback. But open loop is fine for the static or dynamic models where the job is perfectly
modeled and assigned. But when it is executed for unpredictable dynamic systems the open loop does not offer its
full performance. This paper fully focuses on the “closed loop” real time scheduling algorithm for multiprocessors
in the usage of multimedia systems. Here the case is studied from the worst case to the best case.

I. INTRODUCTION

 Despite there are many real time scheduling algorithms available it is not clear that these scheduling algorithms
support fully the problems in the real time system in a multiprocessors for the multimedia systems. There are certain
“open loop” algorithms that can support only some set of characteristics such as the deadlines, precedence
constraints, shared resources etc. For example the Rate Monotonic Algorithm (RMA) is one of the static scheduling
algorithms that have the complete knowledge of the task set and its constraints. But the dynamic scheduling
algorithm does not have a complete knowledge of the task set and its constraints. For example, if a new task is in
urgent and wants to be inserted in the middle of the scheduling then the dynamic scheduler will not know of the
current task and its timing. Earliest Deadline First Algorithm (EDFA) [7] is dynamic scheduling algorithm that has
the complete knowledge of the task set or timing constraints for the resource sufficient environment. Resource
sufficient environment is one where the systems
have the system resources in prior to the task that arrives dynamically at any time and are subjected to the
scheduling. If the resource is insufficient in the environment then the EDFA performance will rapidly degrade in
overload situations.

The spring scheduling algorithm [9] [11] and RED algorithm [3] also support the dynamic scheduling for a set
of characteristic but they are all “open loop” scheduling algorithm. But open loop scheduling is fair for both static
and dynamic systems if there is sufficient resource in a stand-alone system. In the case of multiprocessors the
workload may differ from one way or the other which tends to be unpredictable for the dynamic systems. Many real
world complex problems occur in the multiprocessors. For example, a system in the node of the multiprocessors
may meet the different variation in the overload of the execution as in the case of multiprocessors in computers
controlling the spacecraft the workload parameters that differ due to different input from the space sensors and their
interpretation.
 Feedback control theory has been generally applied in the field of mechanical and in the electrical systems. Now,
it is applied in the field of computer systems where the use of the adaptive real time system is facing many research
challenges. Researches are carried out in different places and the research is also taken to be a challenge and some
of them are answered here. Almost most of the early works on the real time system are concerned with the complete
avoidance of the undesirable effects such as the overloading of the task. But there are still two questions to be
solved. It is difficult to predict the complete requirement of real time system in an unpredictable environment. How
to design a scheduling algorithm to satisfy the complete system requirement in an unpredictable environment?
 There are some environments where the performance specifications are known early. These environments are
called predictable environment. But in a real world most of the performances specifications are not known priory.
This type of environment are called unpredictable environment. It is very difficult to satisfy the requirements in an
unpredictable environment. Most of the applications in the recent years are towards open and unpredictable
environment. And when it is applied to the hard real time application in an unpredictable environment then if the
performance requirement is not satisfied this may lead to mission failure or tragedy.

Jestin Rajamony et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 3 55

 Now a day the soft real time application is growing rapidly in an open and unpredictable environment. Soft real
time application is less restrictive type where a critical real time task gets priority over other tasks and can retain its
priority until the task is completed. For example in the multimedia, virtual reality applications where the response
time is not much required it is used. It has limited utility on the industrial control systems in the robots. In the online
banking neither the resource requirement nor the arrival rate of the service request is known priory. But the
performance guarantee are required even for these type of applications since this may lead to loss of customers, and
can cause financial damages that can lead to mission failure. For these types of applications a well defined scheduler
is very essential in the real world. In the case of the multimedia operating in the multiprocessors the images to be
obtained should be perfect since it can be now a day in the 3D fashion too. So the images obtained should be in time
and the images should be also the correct instead of any loss of data. Three important levels of scheduling are
considered namely, Job scheduling that determines which jobs shall be allowed to compete actively for the
resources of the system. This is sometimes called admission scheduling because it determines which jobs gain
admission to the system. Once admitted, jobs become processes or groups of processes.
 Intermediate level scheduling determines which processes shall be allowed to compete for the CPU. This
responds to short-term fluctuations in system load by temporarily suspending and activation processes to achieve
smooth system operation and to help realize certain system wide performance goals. Thus the intermediate-level
scheduler acts as a buffer between the admission of jobs to the system and the assigning of the CPU to these jobs.
 Low level scheduling that determines which ready process will be assigned the CPU when it next becomes
available, and actually assigns the CPU to this process. It is performed by the dispatcher which operates many times
per second. The dispatcher must therefore reside at all times in primary storage.

 Even though the open loop scheduler spring scheduling algorithms are designed for the worst-case workload
parameter they are underutilized system for workload models that are not available. The problem here is that
scheduling paradigms all assume the timing requirements are to be known and also to be fixed. If there is a fixed
time range for the scheduling then in the case of multiprocessors it will be more tedious because of the varying
inputs. For example if an image is obtained from the satellite of a particular object and if it is not reached in time or
the transmission is late or some other problem then there is possibility of some problem to occur. So it is better to
fix to a range of dead lines for the job to be finished but that becomes too complex.

Due to these problems in this paper a new paradigm for the scheduling as “closed loop” scheduling for a
multiprocessors of systems is been introduced. Previously there are many loop of schedules that has not been
mentioned here as the key principle. In this the task is known only that time when the processor gets it in the
multiprocessors is highlighted. Most of the key performances such as the timing constraint, settling time, and
steady state errors are mentioned in the related section of the paper. The rest of the paper is organized as follows.
Section 2 discusses about the feedback architecture, Section 3 describes about the functions of the system, Section 4
gives in brief about the experiment, section 5 shows the result and section 6 finishes with the conclusion.

II. FEEDBACK ARCHITECTURE

Our framework architecture for the real time scheduler for an unpredictable environment consist of the Feed
back loop with resource. The figure1 explains the component of the closed loop real time feedback scheduler that is
monitor, controller, actuator, scheduler and dispatcher in the multiprocessors.

Jestin Rajamony et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 3 56

 Aborted task

Figure 1. Real Time Feedback Scheduler

 These components are been explained in brief.

i. Monitor:
 The controlled variables (M (k) Miss Ratio and U (k) Processor utilization) are monitored periodically and
then feed a sample back to the controller.
ii. Controller:

The performance references are compared with the corresponding controlled variables to get the current
errors, and compute a change DB(k) (i.e. change in control input) to the total estimated requested utilization based
on the error. A control function is used to keep the controlled variable close to the reference with the manipulated
variable value in order to compensate the load variations.
iii. QoS Actuator:
 According to the change in the control input D (k + 1) that is adjusted by the QoS levels of the tasks the
actuator dynamically changes the total estimated requested utilization. The main aim in designing the actuator is
to ensure that new total estimated requested utilization B (k+1) = B(k) + DB(k). A QoS actuator is just an
admission controller that uses the QoS optimization algorithm. Here in this paper the QoS actuator is initiated
upon the arrival of each task and also isolates the disturbances caused by the variation in the task arrival rates.
iv. Basic Scheduler & Dispatcher:

 With the scheduling policy such EDF or RMA the tasks are scheduled and admitted into the multicore
heterogeneous processor. In this paper the FCS architecture permits plugging in different polices for the basic
scheduler and then designing the entire feedback control scheduling system. The problem that is challenged in
this paper is dynamically correct the scheduling errors at run time based on the inputs from the monitor.
v. Multiprocessor.

Since the multicore processor executes at different speed and has different performance if all the processor
requires a loop then the speed of monitoring becomes low.

 The scheduler receives the tasks in the queue and is based on the algorithm, the task are rescheduled to the
dispatcher. The dispatcher finds out the idle Central Processing Unit (CPU) in the multiprocessors and the task is
executed there. The aborted task is entered in to the feedback loop and then is identified by the monitor that passes
to the controller and then to the actuator.

Task in Queue

Dispatcher

Scheduler

Monitor Controller

Actuator

Arriving Tasks

Set Point

Multiprocessors

Jestin Rajamony et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 3 57

III. SYSTEM FUNCTION

The performance of the real time system usually depends on the task that make up to the dead line. The
percentage of tasks that miss the deadline can be calculated as the system deadline miss ratio. This can be
represented as the controlled variable. Controlled variable here is mentioned as the miss ratio MR (I) and the CPU
utilization PU (I). This system deadline missed ratio depends highly on the system load. Here the manipulated
variable is the total estimated processor utilization for the entire task in the processors of systems.

Suppose if one of the processors input task is interrupted in the middle while on the execution it is monitored
by the monitor. The Monitor monitors the variables MR (I) and PU (I) and then sends it to the controller. The
controller uses the control function to compute the variable and then compares the current value of the controlled
variable with the set point with a referenced tolerance and gets into an error. It then makes ER (I) to the total
requested CPU utilization based on the computed errors.

The output is then passed to the actuator. The actuators differ in term of execution time and arrival time and
change the manipulated variable to control the system. The actuator then change the total estimated CPU utilization
for each sampling instant I for the control input D (I +1) by adjusting each level of the task that comes in. This now
estimates the new total requested CPU utilization C (I+1) = C (I) + ER (I).

But most of the works or research concentrates on the task that is fixed and is well known. Here in this paper
the task are unpredictable and is dynamic and time varying. In the multiprocessors, the systems could get workload
where it is shared with initial start as the nominal assumption. The system could then monitor the actual
performance of the schedule and compare with the actual requirements and find out the differences. The system will
then call the control functions and then apply the correction to keep the system within the acceptable range of the
performance.

A. Constraints

To have a closed loop scheduling in the multiprocessors it is necessary to consider the resources and the
components in the entire system. The first thing to do is set the set point for the scheduler in the system. The
controlled variable has to maintain a very low miss ratio among admitted task. To do this the miss ratio t is
maintained as a small value but not zero. If in the multiprocessors if one system maintains a miss ratio of 0 then the
CPU utilization and the throughput are ignored.

But if the scheduler has a set point with the missed ratio  0 it will try to over load any system CPU in the
network slightly that is free to achieve high utilization. But in an unpredictable environment of large number of
processors or collection of processors in a real time environment it is very difficult to achieve 100% CPU utilization
at all the time. Suppose if a high miss ratio occurs the controller will correct the system and make it to low miss
ratio if possible to achieve some what high CPU utilization and through put in the network.

Next the CPU utilization of the entire accepted task in the group of system is considered as the manipulated
variable. A dispatcher now allocates the system that is idle where the miss ratio  0. If the miss ratio = 0 then the
processor is in utilization and it can’t be overloaded. If needed an admission controller (that can control the flow of
workload into the system) and a service controller (that can adjust the work load in the system) can also be included
in the scheduler as the mechanism to manipulate the requested utilization. The controller that computes the action of
the total amount of the CPU load [5] that need to be added into i.e. PU (t) > 0 or reduced from the system PU (t)
< 0.

B. System Utilization

Assume that each processor in the multiprocessors has different workload and each task is independent. Several
different forms such as milestone method, sieve function method or multiple version method are imprecise
computation [8]. A job with longer execution time and another job with smaller execution time is called. But the
task Ti will have a deadline as Di and a start time Si. Each task Ti in the system has the set I, ET, VAL, S, D in it
where I represents logical version, ET represents the execution time, VAL represents the values of different types of
implementation, S is the start time and D is the deadline. Each task can be adjusted within the range that is
specified for given deadline. Each task has one or more logical versions I = (Ti1, Ti2 … Tik). When applied in the
multiprocessors these tasks are sent to different CPU so the task does not seams to have multiple implementations.
Generally in digital control systems the task timing constraints are allowed to adjust within a specified range
without affecting the system stability.

Each task in different CPU has different execution time ET = {ET11, ET12, … ETkj} of different versions and they
get into different values. This ET specified here is for one CPU. But in different CPU the ET get split to ET21, ET22,

… ETkj. This specifies the CPU and the task that is split for that CPU. The nominal execution time is used for the

Jestin Rajamony et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 3 58

requested CPU utilization. For example if the ET11 = 0.01, then the CPU1 utilization is 1% from the miss ratio for
the first version. For the same CPU if the ET12 = 0.25 then the processor utilization is 2.5% for the second version
and for the third ET13 = 0.15 means 1.5% and so on. So the total execution time results in just 0.35 that is about
3.5% CPU utilization.

IV. EXPERIMENT

 Consider 5 processors, a monitor, scheduler, actuator, dispatcher and a controller in the system of processors.
There is a set point set in the controller that can adjust to a limit range. Assume 10 jobs have arrived in the queue,
the scheduler schedules the job in the queue using any of the scheduling algorithms and send it to the dispatcher.
The dispatcher then identifies the processor that is idle in the set of processors and sends the task to it. The
processor will execute the job if it is a predictable one. Consider if the 2 CPU is given task from the dispatcher and
the task is an unpredictable one it is unable to execute the job. Since it is a real time system any inputs from the
related sensors may occur. For example consider the workload is interrupted and the monitor monitors the flaw in
the workload.

The work of the monitor is to continuously monitor the output of the processor. It is then passed to the
controlled unit and the controller compares with the set point along with the prescribed tolerance and sets it to be
executed and send to the actuator. The actuators then change the total estimated CPU utilization for each sampling
instant I for the control input D (I +1) by adjusting each level of the task that comes in. It is again then passed to the
scheduler and then to the dispatcher and to any idle processor in the set of processors. If in case the task is totally
unpredictable even by the monitor then it is removed from the scheduler and corrective measures are taken. This
part is not discussed in depth in this paper.

V. RESULT

 From the above experiment it was very clear that the CPU was in full utilization as shown in the figure 2 for a
multiprocessor working in the real time environment.

Figure 2. Multiprocessor performance in the real time environment.

VI. CONCLUSION

 In this work, the closed loop concepts for a real time scheduling systems in multiprocessors of systems that
communicate with one another have been explored. This would give a new idea on the real time scheduling in the
field of multiprocessors. Any algorithms used, experiment results that is used for the scheduling are not mentioned.
This gives the complete automated feedback loop based on the input that is dynamically changing.

REFERENCES
[1] [Blev 76] P.R. Blevins and C.V.Ramamoorthy, “ Aspects of a dynamically adaptive operating systems”, IEEE Transactions on Computers,

Vol. 25, No.7, pp. 713-725, July 1976.
[2] [Bradt 98] S. Brandt and G.Nutt, “A Dynamic Quality of Service Middleware Agent for Mediating Application Resource Usage ”, IEEE

Real-Time Systems Symposium, December 1998.
[3] [Butt 95] G. Buttazzo and J.A. Stankovic, “ Adding Robustness in Dynamic Preemptive Scheduling” Responsive Computer Systems: Steps

Toward Fault – tolerant Real-Time Systems (D.S. Fussell and M. Malek Ed.), Kluwer Academic Publishers, 1995.
[4] [Butt 98] G. Buttazzo, G. Lipari and L.Abeni, “ Elastic Task Model for Adaptive Rate Control”, IEEE Real-Time Systems Symposium,

Madrid, Spain, pp. 286-295, December 1998.
[5] [Chen 98] Chenyang Lu, J.A. Stankovic, Gung Tao, Sang H. Son “ Design and Evaluation of a feedback Control EDF Scheduling

Algorithm”, Department of Computer Science, University of Virgina.

0

T(k) = 1

Overloading 99.99%

Underloading

Saturation
Zone

Jestin Rajamony et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 3 59

[6] [Hari 91] J.K. Haritsa, M.Livny and M.J.Carey, “Earliest Deadline Scheduling for Real-Time Database Systems”, IEEE RTSS, 1991.
[7] [Liu 73] C. L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment”, JACM, Vol 20,

No.1, pp 46-61, 1973.
[8] [Liu 91] J.W.S. Liu.et.al “Algorithms for Scheduling Imprecise Computations”, IEEE Computer, Vol 24, No.5, May 1973.
[9] [Rama 84] K.Ramamritham and J.A. Stankovic, “Dynamic task scheduling in distributed hard real time systems”, IEEE software, Vol1, No.

3, July 1984.
[10] [Stee 99] D.C. Steere. et. al., “ A feedback-driven Proportion Allocator for Real-Rate Scheduling”, Operating Systems Design and

Implementation, Feb 1999.
[11] [Zhao 87] W. Zhao, K. Ramamritham and J.A. Stankovic, “Preemptive Scheduling Under Time and Resource Constraints”, IEEE

Transactions on Computers 36(8), 1987.

 Jestin Rajamony, is currently working as a Senior Lecturer in the department of Information and Technology,
CSI Institute of Technology, Thovalai, Kanyakumari district, TamilNadu, India. Before this he has worked in
Software company and steel industry. He has completed his Bachelor degree in Instrumentation and control from
Madurai Kamaraj University, Madurai in 1995 and Master degree in Computer Science and engineering from
Bharathiar University, Coimbatore in 2000. Currently, he is pursuing his Ph.D degree in Vinayaga Mission
University Research Center, Salem,TamilNadu, India. His interest mainly on the parallel computing and distributed
computing in real time systems, multimedia.

 Dr.K.Ramar, is currently a Principal of Sri vidhya college of Engineering and Technology, Virudhunager,
TamilNadu, India. He has been in the teaching and research field for more than 25 years. He has received the Ph.D
degree in Computer Science and Engineering from Mononmaniam Sundarnar University, Thirunelveli,
TamilNadu,India. He has published many Journals, conferences and guided many Ph.D scholars. His area of interest
is distributed computing in real time systems, Image Processing.

 K.P.Ajitha Gladis, is currently working as a Assistant Professor and Head of the department of Information and
Technology, CSI Institute of Technology, Thovalai, Kanyakumari district, TamilNadu, India. She has completed her
Bachelor degree in Computer Science and Engineering from Bharathiar University, Coimbatore in 1995 and Master
degree in Computer Science and engineering from Bharathiar University, Coimbatore in 2000. Currently, She is
pursuing her Ph.D degree in Vinayaga Mission University Research Center, Salem,TamilNadu, India. Her interest is
mainly on the Image Processing, Computer Vision and multimedia.

Jestin Rajamony et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 3 60

	Automated Feedback System for Multimediain Multiprocessors
	Abstract
	I. INTRODUCTION
	II. FEEDBACK ARCHITECTURE
	III. SYSTEM FUNCTION
	IV. EXPERIMENT
	V. RESULT
	VI. CONCLUSION
	REFERENCES

