

Query Optimization in Object-Oriented Database
Management Systems: A short review
Prof.Abhijit Banubakode

Symbiosis International University(SIU)
Pune, India

Dr. Haridasa Acharya
 Allana Institute of Management & Science

Pune, India

Abstract-Object-oriented database systems began
developing in the mid-80’s out of a necessity to meet the
requirements of applications beyond the data processing
applications which were [are] served by relational
database systems. We propose in this paper a new
approach that permits to enrich technique of query
optimization existing in the object-oriented databases and
the comparative analysis of query optimization for
relational databases and object oriented database based
on cost, cardinality and no of bytes. Seen the success of
query optimization in the relational model, our approach
inspires itself of these optimization techniques and
enriched it so that they can support the new concepts
introduced by the object databases.

Keywords: Query Optimization, Relational Databases,

Object-Oriented Databases

I. INTRODUCTION

Query optimization is the process of selecting the most
efficient query-evaluation plan from many strategies usually
possible for processing a given query if the query is complex.
One aspect of optimization occurs at the relational-algebra
level, where the system attempts to-find an expression that is
equivalent to given application, but more efficient to execute.
Another aspect is selecting a detailed strategy for processing
the query, such as choosing the algorithm to use for executing
the operation, choosing the specific indices to use, and so on.
In either case the problem boils down to parsing, estimating
complexity of the algorithms which minimize cost, or time as
the case may be. Object-oriented databases integrate object
orientation with database capabilities. Object orientation
allows a more direct representation and modeling of real-
world problems. Today Oracle, Microsoft, Borland, Informix,
and others incorporated object-oriented features into their
relational systems. Most current OODBs are still not full-
fledged database systems comparable to current relational
database systems (RDBs) [8].

II. BASIC CONCEPTS

The Object-Oriented Database Model
The OODB model is based on a number of basic concepts,
namely Object, Class, Abstraction, Encapsulation, Inheritance
and Polymorphism. [8]

Object: An object is an entity that has a well defined state
and behavior associated with it. The state of an object includes
the current values of all its attributes. Behavior is how an
object acts or reacts, in terms of its state changes and
operations performed upon it. Each object has unique Object
identifier (OID) which is automatically generated by the
system. So that the objects can be easily identified. This is
similar to a primary key in the relational model.
Class: Objects with the same properties and behavior are
grouped into classes. An object can be an instance of only one
class or an instance of several classes.
Abstraction: Abstraction is the process of identifying the key
aspects of an entity and ignoring the rest.
Encapsulation: Encapsulation means hiding the data
members of an object from an object from the outside world.
Inheritance: Inheritance is a property of a class hierarchy
whereby each subclass inherits attributes and methods of its
super-class
 Polymorphism: The ability of different objects to respond to
the same message in different ways is called
polymorphism.

III. QUERY OPTIMIZER COMPONENT

The Query optimizer consist of three major components

[8] A SQL Transformation

B Execution Plan Selection

C Cost Model and Statistics

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 1

A SQL Transformation
The purpose of SQL Transformation is to transform the
original SQL statement into semantically equivalent SQL
statement that can be processed more efficiently.

B Execution Plan Selection
In Execution Plan Selection, the optimizer selects an
execution plan. That describe all the steps when the SQL
is processed, such as order in which table are accessed,
how the table are join together.

 C Cost Model and Statistics
 The Cost Estimates Are Base Upon I/O, CPU And

Memory Resources Required By Each Query Operation,
And The Statistical Information About The Database
Object Such As Table, Indexes And Views.

IV. OPTIMIZATION PROCESS

The query optimization is the processes of selection of the
best path of access data in a database. [4]Process of
optimization is summarizes in three steps (See fig 1)
Rewrite step consist in a syntactic and semantic rewrite of
the query in the goal to determine simpler equivalent
queries. The result of this step is the generation of a query
graph. Ordering operation step is takes place in two phases:
generation and assessment of plans which determined in
the first phase. Execution step permits to choose the
optimal execution plan and to execute it]

Query

Query graph

Execution
Plan

Result Fig1: Optimization Process

Problems of Object Model

Minimal query optimization: One of the biggest problems in
OODBs is the optimization of queries. The additional
complexity of the object-oriented data model (OODM)
complicates the optimization of OODBs queries. [4]

This additional complexity is due to:

 Additional data types
 Complex objects
 Methods and Encapsulation

 ODBs query languages support the use of nested structures,
which may again highly complicate the optimization
process. Due to these problems optimization of object-oriented
queries is extremely hard to solve and is still in the research
stage. The optimization of joins is also another issue that
needs more attention.

Lack of query facilities: The OODB query language is not
ANSI sql compatible. The query language do not support
Nested sub-queries, Set queries like Union, Intersection,
Difference

Security concerns with OODBs: RDBs support
authorization, OODBs do not support authorization. RDBs
allow users to grant and revoke privileges to read or change
the definitions, this feature has to be improved by OODB.

No support for dynamic class definition changes with OODBs:
Most OODBs do not allow dynamic changes to the database
schema, such as Adding a new attribute or method to a class,

 Adding a new superclass to a class,
 Dropping a superclass from a class,

A Explain Plan

 The Explain Plan is the sequence of operations
performed by oracle to execute the statement. By examining
the explain plan, we can identify inefficient SQL statements
[12]

 The explain plan gives the following information: An
ordering of the tables referenced by the statement An access
method for each table mentioned in the statement Data
operations like filter, sort, or aggregation Optimization, such
as the cost and cardinality of each operation

In order to get the result of EXPLAIN PLAN execute the
following query

SELECT id, object name, operation, options FROM
PLAN_TABLE order by id

The table shows the result of explain plan:--

Rewrite

 Ordering Operation

Generation
of the plans

Assessment
of the plans

Execution

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 2

ID OBJECT_NAME OPTIONS OPERATION
--
0 SELECT STATEMENTS
0 SELECT STATEMENT
0 SELECT STATEMENT
1 SORT GROUP BY
1 SORT GROUP BY
2 RBRANCH BY INDEX ROWID TABLE ACCESS
2 RBRANCH BY INDEX ROWID TABLE ACCESS

Fig 2: Explain plan output

The fig consist of:

ID: is the number assigned to each step in the execution plan.

OBJECT_NAME: is the name of table or index,

OPTIONS: Options tell more about an operation. For example,
the operation TABLE ACCESS can have the options: FULL
or BY ROWID. Full means, the entire table is accessed
whereas BY ROWID means, Oracle knows from which block
the rows are to be retrieved, which makes the time to access
the table shorter.

 OPERATION: Provides methods for retrieving and

processing rows from a table.

B Application

We are considering an example of retail banking system. The
bank is organized into various branches and branch each
branch located in a particular city and monitors the assets.
Bank customers are identified by their cust-id values. Bank
offers two type of accounts i.e. saving account & checking
account with loan facility Thus the relation and attributes in
the schema are:

Customer (cust_name, cust_street, cust_city)

Branch (branch_city, branch_name, assets)

Account (acct_no, branch-name, and balance)

Depositor (cust_name, acct_no)

Loan (loan_no, branch_name, amount)

Borrower (cust_name, loan_no)

 Fig 3: Banking system considered

C Transformations

We make the key observation that since a group-by reduces
the cardinality of a relation; an early evaluation of group-by
could result in potential saving in the costs of the subsequent
joins. We present an example that illustrates a transformation
based on the above observation. An appropriate application of
such a transformation could result in plans that are superior to
the plans produced by conventional optimizers by an order of
magnitude or more.

Example2.3: Let us consider the query that computes
branches located in a particular city and total count of
branches in each city .The following alternative plan is
possible. First, group-by clause applied after condition and
hence search time is more and CPU cost is high. In other
words we first check the condition and then grouped on branch
city. Second, group-by clause applied before condition hence
search time is less and CPU cost is less. Here we grouped on
branch city first and then check the condition

D Related Work
In a recent paper [16], Yan and Larson identified a
transformation that enables pushing the group-by past joins.
Their approach is based on deriving two queries, one with and
the other without a group-by clause, from the given SQL
query. The result of the given query is obtained by joining the
two queries so formed. Thus, in their approach, given a query,
there is a unique alternate placement for the group-by
operator. Observe that the transformation reduces the space of
choices for join ordering since the ordering is considered only
within each query. Prior work on group-by has addressed the
problem of pipelining group-by and aggregation with join [5,
6] as well use of group-by to flatten nested SQL queries [7, 5,
8, and 9]. But, these problems are orthogonal to the problem of
optimizing queries containing group-by clause.

E Preliminaries and Notation

We will follow the operational semantics associated with SQL
queries [10, 11]. We assume that the query is a single block
SQL query, as below.

Select All <columnlist> AGG1 (bl) AGG2 (bn)
From <tablelist>
Where cond1 And cond2 . . . And condn
Group By col1,..col2

Fig 5: The typical query under consideration

The WHERE clause of the query is a conjunction of simple
predicates. SQL semantics require that <columnlist> must be

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 3

among col1,.. colj. In the above notation,AGGi…..AGGn
represent built-in SQL aggregate functions. In this paper, we
will not be discussing the cases where there is an ORDER BY
clause in the query. We will also assume that there are no nulls
in the database. These extensions are addressed in [12]. We
refer to columns in {b1, ..bn} as the aggregating columns of
the query. The columns in (col1, ..colj} are called grouping
columns of the query. The functions{AGG1, ..AGGn} are
called the aggregating functions of the query. For the purposes
of this paper, we included Avg and Count as well as cases
where the aggregate functions apply on columns with the
qualifier

Optimization To illustrate the object oriented query
optimizations consider the same example of Retail Banking
system.

1

ACCOUNT

NUMBER

BRANCH

NAME

BALANCE

CUSTOME
R

NAME

ACCOUNT

NUMBER

CUSTOME
RNAME

LOAN
NUMBER

BRANCH CUSTOMERDEPOSITORACCOUNT

BORROWERLOAN

BRANCH

NAME

BRANCH
CITY

ASSETS

CUSTOMER
NAME

CUSTOMER
STREET

CUSTOMER
CITY

LOAN
NUMBERBRANCH

NAME

AMOUNT

BRANCH

 Fig 4: Retail Banking Schema

A. Query Optimization in OODB

 As an example, consider the same Query suppose we want to
find the number of branch in each city except pune

Creation of Object Oriented Type

 Create Type Branchdet_Ty as Object
 (Branch_City Varchar2 (30),
 Assets Number (26, 2));

 Create Type Accountdet_Ty as
 Object (Branch_Name Varchar (30),
 Balance Number (12, 2));

 Creation of Object Oriented Table

Create Table Branch1 (Branch_Name Varchar2 (30)
Primary Key,

Branchdetail Branchdet_Ty);

 Create Table Account1
 (Account_Number Varchar(15),
 Accountdetail Accountdet_Ty);

 As an example, consider the above Query suppose we
have to find the number of branch in each city except pune

 The query evaluation plans for OODB are: -

branchdetail.branch_city, count (*)

 Branchdetail.branch-city! =pune

 Branch1

group-by branchdetail. branch-city

Plan1

 branchdetail.branch_city, count (*)

group-by group-by branch-city

branchdetail.branch-city!=pune

 Branch1

Plan 2

 branchdetail.branch_city, count (*)

 branchdetail.branch-city<‘pune’ or

 Branchdetail.branch-city > ‘pune’

branch1

group-by branchdetail.branch-city

Plan 3

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 4

V. EXPERIMENTAL SETUP

We did an experimental study. We achieved statistically
significant improvement in the quality of plans with a modest
decrease in the optimization cost. The experiments were
conducted using on oracle database Table: 1 shows the Query
performance of OODBMS Based on Cost, Cardinality & No
of Bytes. From experimental setup we observed that there is
significant improvement after query optimization in object
oriented database.

 Table 1: Query Performance of OODB for GROUP BY Clause

Fig 6: Query performance Histogram for OODB

VI. COST ESTIMATION

 Given a query there are many equivalent alternative algebraic
expression for each expression there are many ways to implement
them as operators. The cost estimates are based upon I/O, CPU
and Memory resources required by each query operation, and the
statistical information about the database object such as Table,
Indexes and Views. In a large number of systems, information
on the data distribution on a column is provided by histograms.
Fig 3 shows a histogram for query performance for OODB .A
histogram divides the values on a column into k buckets. In many
cases, k is a constant and determines the degree of accuracy of the
histogram. However, k also determines the memory usage, since
while optimizing a query; relevant columns of the histogram are

loaded in memory. There are several choices for “bucketization”
of values. In many database systems, equi-depth (also called equi-
height) histograms are used to represent the data distribution on a
column. If the table has n records and the histogram has k
buckets, then an equi-depth histogram divides the set of values on
that column into k ranges such that each range has the same
number of values, i.e., n/k. compressed histograms place
frequently occurring values in singleton buckets. The number of
such singleton buckets may be tuned. It has been shown in [13]
that such histograms are effective for either high or low skew
data. One aspect of histograms relevant to optimization is the
assumption made about values within a bucket. For example, in
an equi-depth histogram, values within the endpoints of a bucket
may be assumed to occur with uniform spread. A discussion of
the above assumption as well as a broad taxonomy of histograms
and ramifications of the histogram structures on accuracy appears
in [13]. In the absence of histograms, information such as the min
and max of the values in a column may be used. However, in
practice, the second lowest and the second highest values are used
since the min and max have a high probability of being outlying
values. Histogram information is complemented by information
on parameters such as number of distinct values on that column
although histograms provide information on a single column;
they do not provide information on the correlations among
columns. In order to capture correlations, we need the joint
distribution of values. One option is to consider 2-dimensional
histograms [15, 16]. Unfortunately, the space of possibilities is
quite large. In many systems, instead of providing detailed joint
distribution, only summary information such as the number of
distinct pairs of values is used. For example, the statistical
information associated with a multi-column index may consist of
a histogram on the leading column and the total count of distinct
combinations of column values present in the data.

VII. Conclusions

 One of the biggest problems in Object Oriented Database is the
optimization of queries. Due to these problems optimization of
object-oriented queries is extremely hard to solve and is still in the
research stage. This work is expected to be a significant
contribution to the Database Management area which will not only
reduce time or efforts but will also improve the quality and will
reduce the cost.

REFERENCES

[1] Oracle Advance Compression, an Oracle White paper, April 2008.
[2] Surajit Chaudhuri,” An Overview of Query Optimization in Relational

Systems”, Microsoft Research One Microsoft Way Redmond WA
98052, +1-(425)-703-2001

0

1000

2000

3000

Plan1 Plan2 Plan3

Q
u
e
ry
 p
e
rf
o
rm

an
ce

No of Good plans

Cost

Card

Bytes

Object Oriented Database (OODB)

 Group By Clause

Plans Query Performance

Cost Card Bytes

Plan1 11 8 102

Plan2 11 123 2091

Plan3 11 12 204

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 5

[3] Yannis E. Ioannidis “Query Optimization”, Computer Science
Department, University of Wisconsin, Madison, WI 53706

[4] Minyar Sassi, and Amel Grissa-Touzi ”Contribution to the Query
Optimization in the Object-oriented Databases” Proceedings of world
academy of Science, Engineering and Technology Volume 6 ISSN June
2005 1307-6884

[5] Yannis E. Ioannidis “Query Optimization”, Computer Science
Department, University of Wisconsin, Madison, WI 53706

[6] http://elearning.tvm.tcs.co.in/dbms/62.htm
[7] Journal of Object Technology - Achievements and Weaknesses of

Object-Oriented.htm BY Sikha Bagui, Department of Computer Science,
University of West Florida, U.S.A.

[8] Query Optimization in Oracle Database 10g Documentation Library
[9] SYBASE, Performance and Tuning:Optimizer and Abstract Plans

Adaptive Server® Enterprise12.5.1
[10] Oracle Advanced Compression An Oracle White Paper April 2008
[11] “Oracle Query Optimization Tools” ECS 165A Database Systems,

Winter 2004
[12] Surajit Chaudhuri,” An Overview of Query Optimization in Relational

Systems”, In Proc.of ACM SIGMOD,San Francisco,1987
[13] Tsang A., Olschanowsky M.”A Study of Database 2 Customer Queries,”

IBM Santa Teresa Laboratory, TR-o3.413.
[14] Chaudhuri, S., Shim K.”Including Group-By in Query Optimization.” In

Proc. Of VLDB, Santiago, 1994.
[15] Yan W. P., Larson P. A., “Performing Group-By before Join,”

International Conference on Data Engineering, Feb. 1993, Houston.
[16] DayaI U. “Of Nests and Trees: A Unified Approach to Processing

Queries that contain sub queries, aggregates and quantifiers,” in
Proceedings of the 13th VLDB, Aug 1987.

[17] Klug A. “Access Paths in the ABE Statistical Query Facility,” in
Proceedings of 1982 ACMSIGMOD Conference on the Management of
Data.

[18] Kim W. “On Optimizing an SQL-like Nested Query,” in ACM
Transactions on Database Systems, 7(3):443-469, Sep 1982.

[19] Ganske R. A., Wong H. “Optimization of Nested Queries Revisited,” in
Proceedings of 1987 ACMSIGMOD Conference on Management of
Data, San Francisco, May 1987.

[20] Murahkrishna M. “Improved Unnesting Algorithms for Join Aggregate
SQL Queries,” in Proceedings of the 18th VLDB, 1992

[21] Date C. J., Darwen H. “A Guide to the SQL Standard: A User’s
Guide,” Addison-Wesley, 1993.

[22] ISO. Database Language SQL ISO/IEC, Document ISO/IEC 9075:1992.
Also available as ANSI Document ANSI X3.135-1992.

[23] Chaudhuri S., Shim K. “The promise of Early Aggregation,” HPL
Technical Report, 1994.

[24] Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J. Improved
Histograms for Selectivity Estimation of Range Predicates In Proc. of
ACM SIGMOD, Montreal, 1996.

[25] Muralikrishna M., Dewitt D.J. Equi-Depth Histograms for Estimating
Selectivity Factors for Multi-Dimensional Queries, Proc. of ACM
SIGMOD, Chicago, 1988.

[26] Muralikrishna M., Dewitt D.J. Equi-Depth Histograms for Estimating
Selectivity Factors for Multi-Dimensional Queries, Proc. of ACM
SIGMOD, Chicago, 1988.

[27] Poosala, V., Ioannidis, Y.E. Selectivity Estimation without the Attribute

Value Independence Assumption. In Proc. of VLDB, Athens, 1997.

Abhijit Banubakode received ME degree in Computer
Engineering from Pune Institute of Computer
Technology (PICT), University of Pune, India in 2005
and BE degree in Computer Science and Engineering
from Amravati University, India, in 1997. Presently he
is perusing his Ph.D. from Symbiosis Institute of
Research and Innovation (SIRI), a constituent of
Symbiosis International University (SIU), Pune, India.
His current research area is Query Optimization in

Compressed Object-Oriented Database Management Systems (OODBMS).
Currently he is working as Assistant Professor in Department of Information
Technology, Rajarshi Shahu College of Engineering, Pune, India .He is
having 13 years of teaching experience. He is a member of International
Association of Computer Science and Information Technology (IACSIT),
ISTE, CSI and presented six papers in International and National conference.

 Dr. Haridasa Acharya received MSc degree
in Applied Mathematics from University of
PUNE, India in the year 1970 and the PhD
degree in Mathematics from Indian Institute of
Technology (IIT), Kanpur, India in 1975. He is
an Associate Professor at Symbiosis Institute of
Computer Studies and Research, a constituent
of Symbiosis International University (SIU),
Pune, India. Was a National Fellow of
Biotechnology (Dept of Science and Tech.) in
the year 1990 at IASRI, New Delhi. He has
worked as principal investigator in research

projects funded by ICAR, UGC. e worked as a co-investigator in many ICAR
research projects and the advisor for Design of Experiments and Research
Analysis. Had opportunity to guide research scholars working in diversified
areas like Food Technology, Veterinary Medicine and Sciences, Soil Science
and Farm Engineering apart from students in Computer Science and
Mathematics. His current area of research is fuzzy protocols, query
optimization, and analytics. He was the head of the Dept. of Basic Sciences
and Computers at College of Agric. Engg., under the Marathwada Agric.
University for period of twenty years, and has been a faculty and Program
Head (MSc) at SICSR for the past three years. He has more than 30 scientific
research papers, in national and international journals to his credit; in addition
he presented papers at National and International conferences. He was
awarded Shiksha Ratna by India International Friendship Society, in Nov
2008, for his significant contribution to Education.

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 6

	Query Optimization in Object-Oriented DatabaseManagement Systems: A short review
	Abstract
	Keywords
	I. INTRODUCTION
	II. BASIC CONCEPTS
	III. QUERY OPTIMIZER COMPONENT
	IV. OPTIMIZATION PROCESS
	V. EXPERIMENTAL SETUP
	VI. COST ESTIMATION
	VII. Conclusions
	REFERENCES

