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Abstract-Object-oriented database systems began 
developing in the mid-80’s out of a necessity to meet the 
requirements of applications beyond the data processing 
applications which were [are] served by relational 
database systems. We propose in this paper a new 
approach that permits to enrich technique of query 
optimization existing in the object-oriented databases and 
the comparative analysis of query optimization for 
relational databases and object oriented database   based 
on cost, cardinality and no of bytes. Seen the success of 
query optimization in the relational model, our approach 
inspires itself of these optimization techniques and 
enriched it so that they can support the new concepts 
introduced by the object databases. 

Keywords: Query Optimization, Relational Databases, 

Object-Oriented Databases  

I. INTRODUCTION 

Query optimization is the process of selecting the most 
efficient query-evaluation plan from many strategies usually 
possible for processing a given query if the query is complex. 
One aspect of optimization occurs at the relational-algebra 
level, where the system attempts to-find an expression that is 
equivalent to given application, but more efficient to execute. 
Another aspect is selecting a detailed strategy for processing 
the query, such as choosing the algorithm to use for executing 
the operation, choosing the specific indices to use, and so on. 
In either case the problem boils down to parsing, estimating 
complexity of the algorithms which minimize cost, or time as 
the case may be. Object-oriented databases integrate object 
orientation with database capabilities. Object orientation 
allows a more direct representation and modeling of real-
world problems. Today Oracle, Microsoft, Borland, Informix, 
and others incorporated object-oriented features into their   
relational systems. Most current OODBs are still not full-
fledged database systems comparable to current relational 
database systems (RDBs) [8]. 

II. BASIC CONCEPTS 

The Object-Oriented Database Model  
The OODB model is based on a number of basic concepts, 
namely Object, Class, Abstraction, Encapsulation, Inheritance 
and Polymorphism. [8]  

Object:  An object is an entity that has a well defined state 
and behavior associated with it. The state of an object includes 
the current values of all its attributes. Behavior is how an 
object acts or reacts, in terms of its state changes and 
operations performed upon it. Each object has unique Object 
identifier (OID) which is automatically generated by the 
system. So that the objects can be easily identified. This is 
similar to a primary key in the relational model. 
Class:  Objects with the same properties and behavior are 
grouped into classes. An object can be an instance of only one 
class or an instance of several classes. 
Abstraction: Abstraction is the process of identifying the key 
aspects of an entity and ignoring the rest. 
Encapsulation: Encapsulation means hiding the data 
members of an object from an object from the outside world.   
Inheritance: Inheritance is    a property   of a class hierarchy 
whereby each subclass inherits attributes and methods of its 
super-class 
 Polymorphism: The ability of different objects to respond to 
the    same    message in different ways is called 
polymorphism.  
 

III.  QUERY OPTIMIZER COMPONENT  

The Query optimizer consist of three major components 

[8]      A   SQL Transformation 

B   Execution Plan Selection 

C   Cost Model and Statistics 
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A  SQL Transformation 
The purpose of SQL Transformation is to transform the 
original SQL statement into semantically equivalent SQL 
statement that can be processed more efficiently.  
 
B  Execution Plan Selection 
In Execution Plan Selection, the optimizer selects an 
execution plan.  That describe all the steps when the SQL 
is processed, such as order in which table are accessed, 
how the table are join together. 

 
   C  Cost Model and Statistics 
   The Cost Estimates Are Base Upon I/O, CPU And 

Memory Resources Required By Each Query Operation, 
And The Statistical Information About The Database 
Object Such As Table, Indexes And Views. 

 
IV. OPTIMIZATION PROCESS                                                    

The query optimization is the processes of selection of the    
best path of access data in a database. [4]Process of 
optimization is summarizes in three steps (See fig 1) 
Rewrite step consist in a syntactic and semantic rewrite of 
the query in the goal to determine simpler equivalent 
queries. The result of this step is the generation of a query 
graph. Ordering operation step is takes place in two phases: 
generation and assessment of plans which determined in 
the first phase. Execution step permits to choose the 
optimal execution plan and to execute it] 

Query 

Query graph 

 

 

 

Execution 
Plan 

Result             Fig1: Optimization Process 

Problems of Object Model  

Minimal query optimization: One of the biggest problems in 
OODBs is the optimization of queries. The additional 
complexity of the object-oriented data model (OODM) 
complicates the optimization of OODBs queries. [4] 

This additional complexity is due to: 

 Additional data types  
 Complex objects 
 Methods and Encapsulation  

   ODBs query languages support the use of nested structures, 
which may again    highly complicate the optimization 
process. Due to these problems optimization of object-oriented 
queries is extremely hard to solve and is still in the research 
stage. The optimization of joins is also another issue that 
needs more attention.  

Lack of query facilities: The OODB query language is not 
ANSI sql compatible. The query language do not support 
Nested sub-queries, Set queries like Union, Intersection, 
Difference  

Security concerns with OODBs: RDBs support 
authorization, OODBs do not support authorization. RDBs 
allow users to grant and revoke privileges to read or change 
the definitions, this feature has to be improved by OODB. 

No support for dynamic class definition changes with OODBs: 
Most OODBs do not allow dynamic changes to the database 
schema, such as Adding a new attribute or method to a class,  

 Adding a new superclass to a class,  
 Dropping a superclass from a class,  

A   Explain Plan 

          The Explain Plan is the sequence of operations    
performed by oracle to execute the statement. By examining   
the explain plan, we can identify inefficient SQL statements 
[12] 

 The explain plan gives the following information: An 
ordering of the tables referenced by the statement An access 
method for each table mentioned in the statement Data 
operations like filter, sort, or aggregation Optimization, such 
as the cost and cardinality of each operation  

In order to get the result of EXPLAIN PLAN execute the 
following query  

SELECT id, object name, operation, options FROM 
PLAN_TABLE order by id  

The table shows the result of explain plan:-- 

Rewrite 

   Ordering Operation 

Generation 
of the plans  

Assessment 
of the plans  

Execution 
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ID   OBJECT_NAME     OPTIONS              OPERATION    
------------------------------------------------------------------------       
0                                          SELECT STATEMENTS 
0                                          SELECT STATEMENT 
0                                          SELECT STATEMENT 
1                                          SORT                                   GROUP BY 
1                                          SORT                                   GROUP BY 
2         RBRANCH            BY INDEX ROWID        TABLE ACCESS  
2         RBRANCH            BY INDEX ROWID         TABLE ACCESS  

 

Fig 2: Explain plan output 

The fig consist of:  

ID: is the number assigned to each step in the execution plan. 

OBJECT_NAME: is the name of table or index,  

OPTIONS: Options tell more about an operation. For example, 
the operation TABLE ACCESS can have the options: FULL 
or BY ROWID. Full means, the entire table is accessed 
whereas BY ROWID means, Oracle knows from which block 
the rows are to be retrieved, which makes the time to access 
the table shorter. 

  OPERATION: Provides methods for retrieving and 

processing rows from     a table. 

B  Application 

We are considering an example of retail banking system. The 
bank is organized into various branches and branch each 
branch located in a particular city and monitors the assets. 
Bank customers are identified by their cust-id values. Bank 
offers two type of accounts i.e. saving account & checking 
account with loan facility Thus the relation and attributes in 
the schema are: 

Customer (cust_name, cust_street, cust_city)    

Branch (branch_city, branch_name, assets) 

Account (acct_no, branch-name, and balance) 

Depositor (cust_name, acct_no) 

Loan (loan_no, branch_name, amount) 

Borrower (cust_name, loan_no) 

  Fig 3:  Banking system considered 

C   Transformations 

We make the key observation that since a group-by reduces 
the cardinality of a relation; an early evaluation of group-by 
could result in potential saving in the costs of the subsequent 
joins. We present an example that illustrates a transformation 
based on the above observation. An appropriate application of 
such a transformation could result in plans that are superior to 
the plans produced by conventional optimizers by an order of 
magnitude or more. 

Example2.3: Let us consider the query that computes 
branches located in a particular city and total count of 
branches in each city .The following alternative plan is 
possible. First, group-by clause applied after condition and 
hence search time is more and CPU cost is high. In other 
words we first check the condition and then grouped on branch 
city. Second, group-by clause applied before condition hence 
search time is less and CPU cost is less. Here we grouped on 
branch city first and then check the condition 

D  Related Work 
In a recent paper [16], Yan and Larson identified a 
transformation that enables pushing the group-by past joins. 
Their approach is based on deriving two queries, one with and 
the other without a group-by clause, from the given SQL 
query. The result of the given query is obtained by joining the 
two queries so formed. Thus, in their approach, given a query, 
there is a unique alternate placement for the group-by 
operator. Observe that the transformation reduces the space of 
choices for join ordering since the ordering is considered only 
within each query.  Prior work on group-by has addressed the 
problem of pipelining group-by and aggregation with join [5, 
6] as well use of group-by to flatten nested SQL queries [7, 5, 
8, and 9]. But, these problems are orthogonal to the problem of 
optimizing queries containing group-by clause.  

 
E   Preliminaries and Notation 

 
We will follow the operational semantics associated with SQL 
queries [10, 11]. We assume that the query is a single block 
SQL query, as below. 
 
Select All <columnlist> AGG1 (bl) AGG2 (bn)  
From <tablelist> 
Where cond1 And cond2 . . . And condn 
Group By col1,..col2 
 
Fig 5:   The typical query under consideration 

The WHERE clause of the query is a conjunction of simple 
predicates. SQL semantics require that <columnlist> must be 

Abhijit Banubakode et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 1 No. 1 3



 

among  col1,.. colj. In the above notation,AGGi…..AGGn  
represent built-in SQL aggregate functions. In this paper, we 
will not be discussing the cases where there is an ORDER BY 
clause in the query. We will also assume that there are no nulls 
in the database. These extensions are addressed in [12]. We 
refer to columns in {b1, ..bn} as the aggregating columns of 
the query. The columns in (col1, ..colj} are called grouping 
columns of the query. The functions{AGG1, ..AGGn} are 
called the aggregating functions of the query. For the purposes 
of this paper, we included Avg and Count as well as cases 
where the aggregate functions apply on columns with the 
qualifier 

Optimization      To illustrate the object oriented query 
optimizations consider the same example of Retail Banking 
system. 
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                         Fig 4: Retail Banking Schema 

 
A.  Query Optimization in OODB 

         As an example, consider the same Query suppose we want to 
find the   number of branch in each city except pune  
  
Creation of Object Oriented Type 
 

   Create Type Branchdet_Ty as Object 
 (Branch_City Varchar2 (30),   
 Assets    Number (26, 2)); 

        

       Create Type Accountdet_Ty as 
       Object (Branch_Name     Varchar (30), 
        Balance   Number (12, 2));  

   Creation of Object Oriented Table 
 
Create Table Branch1 (Branch_Name    Varchar2 (30) 
Primary Key,    

Branchdetail    Branchdet_Ty); 
        

   Create Table   Account1 
       (Account_Number    Varchar(15), 
       Accountdetail    Accountdet_Ty); 
 
 As an example, consider the above Query suppose we  
have   to find the   number of branch in each city except pune  
 
  The query evaluation plans for OODB are: - 

branchdetail.branch_city, count (*)      

 Branchdetail.branch-city! =pune 

  Branch1 

group-by branchdetail. branch-city 

Plan1 

 branchdetail.branch_city, count (*)      

group-by group-by branch-city 

branchdetail.branch-city!=pune 

 Branch1  

Plan 2    

 

 branchdetail.branch_city, count (*)        

 branchdetail.branch-city<‘pune’ or 

       Branchdetail.branch-city > ‘pune’ 

branch1 

group-by branchdetail.branch-city  

Plan 3   
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V. EXPERIMENTAL SETUP 

We did an experimental study. We achieved statistically 
significant improvement in the quality of plans with a modest      
decrease in the optimization cost. The experiments were 
conducted using on oracle database Table: 1 shows the Query 
performance of OODBMS Based on Cost, Cardinality & No 
of Bytes. From experimental setup we observed that there is 
significant improvement after query optimization in object 
oriented database.   
 
 Table 1: Query Performance of OODB for GROUP BY Clause  

 

 
 
 

Fig 6: Query performance Histogram for OODB 

VI. COST ESTIMATION   

  Given a query there are many equivalent alternative algebraic 
expression for each expression there are many ways to implement 
them as operators. The cost estimates are based upon I/O, CPU 
and Memory resources required by each query operation, and the 
statistical information about the database object such as Table, 
Indexes and Views.    In a large number of systems, information 
on the data distribution on a column is provided by histograms. 
Fig 3 shows a histogram for query performance for OODB .A 
histogram divides the values on a column into k buckets. In many 
cases, k is a constant and determines the degree of accuracy of the 
histogram. However, k also determines the memory usage, since 
while optimizing a query; relevant columns of the histogram are 

loaded in memory. There are several choices for “bucketization” 
of values. In many database systems, equi-depth (also called equi-
height) histograms are used to represent the data distribution on a 
column. If the table has n records and the histogram has k 
buckets, then an equi-depth histogram divides the set of values on 
that column into k ranges such that each range has the same 
number of values, i.e., n/k. compressed histograms place 
frequently occurring values in singleton buckets. The number of 
such singleton buckets may be tuned. It has been shown in [13] 
that such histograms are effective for either high or low skew 
data. One aspect of histograms relevant to optimization is the 
assumption made about values within a bucket. For example, in 
an equi-depth histogram, values within the endpoints of a bucket 
may be assumed to occur with uniform spread. A discussion of 
the above assumption as well as a broad taxonomy of histograms 
and ramifications of the histogram structures on accuracy appears 
in [13]. In the absence of histograms, information such as the min 
and max of the values in a column may be used. However, in 
practice, the second lowest and the second highest values are used 
since the min and max have a high probability of being outlying 
values. Histogram information is complemented by information 
on parameters such as number of distinct values on that column 
although histograms provide     information on a single column; 
they do not provide information on the correlations among 
columns. In order to capture correlations, we need the joint 
distribution of values. One option is to consider 2-dimensional 
histograms [15, 16]. Unfortunately, the space of possibilities is 
quite large. In many systems, instead of providing detailed joint 
distribution, only summary information such as the number of 
distinct pairs of values is used. For example, the statistical 
information associated with a multi-column index may consist of 
a histogram on the leading column and the total count of distinct 
combinations of column values present in the data. 

 
 

VII.   Conclusions  

  One of the biggest problems in Object Oriented Database is the 
optimization of queries. Due to these problems optimization of 
object-oriented queries is extremely hard to solve and is still in the 
research stage. This work is expected to be a significant 
contribution to the Database Management area which will not only 
reduce time or efforts but will also improve the quality and will 
reduce the cost. 
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